Lineare Algebra II

Sarah Horsten Christoph Halmes

SS 2004

Disclaimer

- Dieses Skript ist eine Mitschrift der Vorlesung "Lineare Algebra II", die von Prof. Dr. Herbert Pahlings im SS 2004 an der RWTH Aachen gelesen wurde.
- Dieses Skript erhebt keinerlei Ansprüche auf Vollständigkeit und/oder Fehlerfreiheit. Insbesondere wurden die (meisten) Beweise nicht mit in das Skript aufgenommen.
- Dieses Skript darf zu nicht-kommerziellen Zwecken frei weitergegeben und kopiert werden.
- Für Schäden, die durch dieses Skript auch indirekt entstanden sind, haften die Autoren nicht.
- Wer Fehler findet, kann sie uns an sarah.horsten@rwth-aachen.de mailen oder behalten (falls es nur Rächtschraibfehler sind).

Inhaltsverzeichnis

1	Normalformen von Matrizen, Euklidische Ringe, Moduln	9
	1.1 Äquivalenz und Ähnlichkeit von Matrizen	9
	Definition 1.1.1 (Volle lineare Gruppe)	
	Beispiel 1.1.1	
	Definition 1.1.2 ((R-)Äquivalenz, (R-)Ähnlichkeit)	
	Bemerkung 1.1.1	
	Hintergrund und Motivation	
	Satz 1.1.1	
	Bemerkung 1.1.2	11
	Definition 1.1.3 (char. Matrix)	
	Satz 1.1.2 (Frobenius)	11
	Beispiel 1.1.2	11
	Lemma 1.1.1	11
	Beispiel 1.1.3	12
	Corollar 1.1.1	12
	Fragen	12
	1.2 Euklidische Ringe	13
	Definition 1.2.1 (Int.bereich)	13
	Beispiel 1.2.1	13
	Definition 1.2.2 ($a b, a \sim b$, Einheit, R^* , irreduzibel)	
	Beispiel 1.2.2	13
	Definition 1.2.3 (ggT)	13
	Beispiel 1.2.3	14
	Bemerkung 1.2.1	
	Definition 1.2.4 (Euklidischer Ring)	
	Beispiel 1.2.4	14
	Bemerkung 1.2.2	15
	Satz 1.2.1 (Euklidischer Algorithmus)	15
	Satz 1.2.2 (Erweiterter Euklid. Algorithmus)	15
	1.3 Invariantenteiler	15
	Definition 1.3.1 (Zeilen-/Spalten-Operationen)	
	Lemma 1.3.1	16
	Satz 1.3.1	
	Lemma 1.3.2	
	Satz 1.3.2 (Invariantenteilersatz)	
	Satz 1.3.3	
	Beispiel 1.3.1	
	Remorkung 1 2 1	

1.4 Eindeutigkeit der Invariantenteiler					19	
Definition 1.4.1 (k -Minor)					19	
Beispiel 1.4.1					19	
Satz 1.4.1					19	
Satz 1.4.2					19	
Beispiel 1.4.2					20	
1.5 Die rationale kanonische Form					20	
Beispiel 1.5.1					20	
Satz 1.5.1					20	
Erinnerung					21	
Satz 1.5.2					21	
Definition $1.5.1$ (rationale kanonische Form (Frobenius'sche	N	orn	nal-			
$form)) \dots \dots$					21	
Beispiel 1.5.2					21	
Beispiel 1.5.3					23	
1.6 Weierstraß-Normalform und Jordansche Normalform .					23	
Satz 1.6.1					23	
Bemerkung 1.6.1					23	
Definition 1.6.1 (Elementarteiler)					23	
Bemerkung 1.6.2					23	
Beispiel 1.6.1					23	
Satz 1.6.2					24	
Lemma 1.6.1					24	
Satz 1.6.3					24	
Bemerkung 1.6.3					25	
Beispiel 1.6.2					25	
Beispiel 1.6.3					25	
Definition 1.6.2 $(exp(A))$					26	
1.7 Moduln über Ringen, Homomorphiesatz					28	
Definition 1.7.1 (R-Modul)					28	
Beispiel 1.7.1					28	
Definition 1.7.2 (Erzeugnis, Untermodul)					28	
Definition 1.7.3 (Basis, freier R -Modul, endlich erzeugt)					29	
Bemerkung 1.7.1					29	
Definition 1.7.4 (<i>R</i> -linear, Hom_R , <i>R</i> -Isomorphismus, $Kern$, Ba					-	29
Beispiel 1.7.2					29	
Bemerkung 1.7.2					30	
Satz 1.7.1 (Homomorphiesatz für $(R-)$ Moduln)					30	
Bemerkung 1.7.3					31	
Beispiel 1.7.3					31	
Definition 1.7.5 (direkte Summe)					32	
Satz 1.7.2					32	
Bemerkung 1.7.4					32	
Satz 1.7.3					32	
Bezeichnung (Spaltenmodul)					32	
1.8 Moduln über Euklidischen Ringen					33	
Lemma 1.8.1					33	
Folgerung 1.8.1					33	
Frage					33	
Satz 1 8 1	•	•		•	33	

	Bemerkung 1.8.1 (Ideal, Hauptideal)
	Satz 1.8.2
	Satz 1.8.3 (Hauptsatz über endlich erzeugte Moduln über euklidischen
	Ringen)
	Satz 1.8.4 (Hauptsatz über endlich erzeugte abelsche Gruppen) 3
	Beispiel 1.8.1
2	Linear- und Bilinearformen 33
_	2.1 Dualraum
	Definition 2.1.1 (Dualraum, Linearform)
	Lemma 2.1.1
	Folgerung 2.1.1
	Bemerkung 2.1.1
	Bemerkung 2.1.2
	Beispiel 2.1.1
	Bemerkung 2.1.3
	Definition 2.1.2 (Annihilator)
	Bemerkung 2.1.4
	Satz 2.1.1 (Dualitätssatz)
	Beispiel 2.1.2
	Satz 2.1.2
	Bemerkung 2.1.5
	2.2 Bilinearformen
	Definition 2.2.1 (Bilinearform)
	Definition 2.2.2 (Gram-Matrix)
	Bemerkung 2.2.1
	Bemerkung 2.2.2
	Definition 2.2.3 (kongruent)
	Beispiel 2.2.1
	Folgerung 2.2.1
	Bemerkung 2.2.3
	Definition 2.2.4 (nicht ausgeartet)
	Beispiel 2.2.2
	Bemerkung 2.2.4
	2.3 Orthogonalität
	Definition 2.3.1 (symmetrisch, alternierend, orthogonal, Orthogonal-
	raum, Radikal, isotrop)
	Bemerkung 2.3.1
	Beispiel 2.3.1
	Satz 2.3.1
	Beispiel 2.3.2
	Corollar 2.3.1
	2.4 Symmetrische Bilinearformen, Orthogonalisierung 4
	Frage
	Beispiel 2.4.1
	Satz 2.4.1
	Corollar 2.4.1
	Frage
	Beispiel 2.4.2
	Definition 2.4.1 (zu Φ gehörige quadratische Form, Quadrik) 43
	2.111 (24 + 80110118) quadrum, quadrum,

	Beispiel 2.4.3	13
	2.5 Symmetrische Bilinearformen über angeordneten Körpern 4	14
	Definition 2.5.1 (angeordneter Körper)	14
		14
	· ·	15
	· ·	15
	(1	15
		15
	<u>-</u>	15
		16
		16
		16
	0 11 0 11	16
		16
		17
	(0 11 /	# 1 17
	1	±1 18
		48 18
		±0 19
		49 49
	Folgerung 2.6.1	ŧЭ
3	Tensorprodukte 5	60
,	•	50
		50
		51
		51
	,	52
		52
	±	52
		52
		52
		52 52
		53
		53
		53
		53
		54
		55
		55
	•	56
	•	
	` '	56 57
		57
		57
		57
		57
	9	58
		58
	E 1 0.4.1	
	0 0	59
	Satz 3.4.3	59 59 59

Beispiel 3.4.1
3.5 Das äußere Produkt
Definition 3.5.1 $(Alt_r(V, W))$ 60
Beispiel 3.5.1
Bemerkung 3.5.1
Satz 3.5.1
Definition 3.5.2 (r-te äußere Potenz) 61
Bemerkung 3.5.2
Satz 3.5.2 (Eindeutigkeit)
Satz 3.5.3
Beispiel 3.5.2
Satz 3.5.4
Corollar 3.5.1
Folgerung 3.5.1
Beispiel 3.5.3
Definition 3.5.3 (äußeres Produkt (Vektorprodukt)) 63
Beispiel 3.5.4
Bemerkung 3.5.3
Bemerkung 3.5.4
Bemerkung 3.5.5
Bemerkung 3.5.6
Satz 3.5.5
Definition 3.5.4 (Plücker-Koordinaten)
Beispiel 3.5.5
3.6 Äußeres Produkt von linearen Abbildungen 66
Satz 3.6.1
Beispiel 3.6.1
Satz 3.6.2
Bemerkung 3.6.1
Beispiel 3.6.2
Folgerung 3.6.1 (die Wahrheit über die Cauchy-Schwarzsche-Ungleichung
(endlich enthüllt :-))
Folgerung 3.6.2
Satz 3.6.3
Beispiel 3.6.3
3.7 Skalarerweiterungen
Beispiel 3.7.1
Satz 3.7.1
Satz 3.7.2
A.C. 1 '11' D"
Affine und projektive Räume 70
4.1 Affine Räume
Definition 4.1.1 (affiner Raum, Dimension affiner Raum)
Bemerkung 4.1.1
Beispiel 4.1.1
Definition 4.1.2 (affiner Teilraum)
Bemerkung 4.1.2
Lemma 4.1.1
Definition 4.1.3 ()
4.2 Affine Abbildungen

Definition 4.2.1 (affine Abbildung)	72
Bemerkung 4.2.1	72
Definition 4.2.2 (Teilverhältnis, Mittelpunkt)	72
Bemerkung 4.2.2	72
Beispiel 4.2.1	72
Satz 4.2.1	73
Satz 4.2.2	73
Definition 4.2.3 (affines Koordinatensystem, affiner bzw. inhomogener	
Koordinatenvektor)	73
Lemma 4.2.1	74
Beispiel 4.2.2	74
Satz 4.2.3	74
Definition 4.2.4 (Affinität)	74
Beispiel 4.2.3	74
Satz 4.2.4	75
4.3 Affine Klassifikation der Quadriken	75
Definition 4.3.1 (Quadrik, affin äquivalente Quadriken)	75
Bemerkung 4.3.1	76
Bemerkung 4.3.2	76
Satz 4.3.1	78
Corollar 4.3.1	78
4.4 Affine euklidische Räume (Euklidische Punkträume)	79
Definition 4.4.1 (euklidischer affiner Raum)	79
Bemerkung 4.4.1 (cukhdischer annier radin)	79
Definition 4.4.2 (Isometrie)	79
Satz 4.4.1	79
Definition 4.4.3 (Bewegung, cartesisches Koordinatensystem)	80
Bemerkung 4.4.2	80
Bemerkung 4.4.3	80
Satz 4.4.2	80
4.5 Homogene Koordinaten, Satz von Desargues	81
Definition 4.5.1 (homogener Koordinatenvektor)	81
Lemma 4.5.1	81
Lemma 4.5.2	81
Satz 4.5.1 (Desargues)	81
Corollar 4.5.1 (Kleiner Satz von Desargues)	82
Definition 4.5.2 (affine Ebene)	83
Bemerkung 4.5.1	83
Bemerkung 4.5.2	83
Bemerkung 4.5.3	84
4.6 Projektive Räume	84
Definition 4.6.1 (projektiver Raum, projektiver Unterraum)	84
Beispiel 4.6.1	84
Bemerkung 4.6.1	84
	85
Beispiel 4.6.2	
Satz 4.6.1	85 86
\= ·	
Beispiel 4.6.3	86
Beispiel 4.6.4	86
Satz 4.6.2	87

Bemerkung 4.6.2	 														87
Frage	 														87

Kapitel 1

Normalformen von Matrizen, Euklidische Ringe, Moduln

1.1 Äquivalenz und Ähnlichkeit von Matrizen

Es sei R ein komm. Ring (hier: immer mit Eins 1), z.B. $R=\mathbb{Z}, R=K[X]$ mit K Körper.

Definition 1.1.1 (Volle lineare Gruppe)

$$GL_n(R) = \{A \in R^{n \times n} | \text{ es gibt } A^{-1} \in R^{n \times n} \text{ mit } A^{-1} \cdot A = A \cdot A^{-1} = E_n \}, \text{ wobei}$$

$$E_n = \begin{bmatrix} 1 & 0 \\ & \ddots & \\ 0 & 1 \end{bmatrix} = diag(1, \dots, 1) \in R^{n \times n}, \text{ die volle lineare Gruppe}$$
über R.

Beispiel 1.1.1

•
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \notin GL_2(\mathbb{Z}), \in GL_2(\mathbb{Q})$$

$$A^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{bmatrix} \notin \mathbb{Z}^{2 \times 2}$$

•
$$A = \begin{bmatrix} 1 & 0 \\ 1 & -1 \end{bmatrix} \in GL_2(\mathbb{Z})$$

 $A^{-1} = \begin{bmatrix} 1 & 0 \\ 1 & -1 \end{bmatrix}$

Definition 1.1.2 ((R-)Äquivalenz, (R-)Ähnlichkeit)

- a) $A, B \in \mathbb{R}^{m \times n}$ heißen (**R-)äquivalent**, wenn es $P \in GL_m(\mathbb{R})$, $Q \in GL_n(\mathbb{R})$ gibt mit B = PAQ.
- b) $A, A' \in \mathbb{R}^{n \times n}$ heißen (**R-)ähnlich**, wenn es $P \in GL_n(\mathbb{R})$ gibt mit $A' = P^{-1}AP$.

Bemerkung 1.1.1

- a) (R-)Äquivalenz und (R-)Ähnlichkeit sind Äquivalenzrelationen.
- b) $A, A' \in \mathbb{R}^{n \times n}$ ähnlich $\Rightarrow A, A'$ äquivalent

Hintergrund und Motivation 1.1.1

V, W seien K-Vektorräume (K Körper), dim(V) = n, dim(W) = m, $\mathcal{B}, \mathcal{B}'$ Basisfolgen von $V, \mathcal{C}, \mathcal{C}'$ Basisfolgen von $W, \varphi \in Hom_K(V, W)$

- $M_{\mathcal{C}'}^{\mathcal{B}'}(\varphi) = P \cdot M_{\mathcal{C}}^{\mathcal{B}}(\varphi) \cdot Q$ mit $P = M_{\mathcal{C}'}^{\mathcal{C}}(id_W) \in GL_n(K)$, $Q = M_{\mathcal{B}}^{\mathcal{B}'}(id_v) \in GL_n(K)$ Die Matrizen von φ bzgl. verschiedener Basispaare sind (K-)äquivalent.
- $\varphi \in End_K(V)$ $M_{\mathcal{B}}(\varphi) = M_{\mathcal{B}}^{\mathcal{B}}(\varphi)$

Beachte:

$$\begin{array}{ccc} \varphi & \mapsto & M_{\mathcal{B}}(\varphi) \\ End(V) & \to & K^{n\times n} \\ \text{ist Algebra-Homomorphismus, d.h. } M_{\mathcal{B}}(\varphi \circ \psi) = M_{\mathcal{B}}(\varphi) \cdot M_{\mathcal{B}}(\psi). \end{array}$$

 $M_{\mathcal{B}'}(\varphi) = P^{-1} \cdot M_{\mathcal{B}}(\varphi) \cdot P$ mit $P = M_{\mathcal{B}}^{\mathcal{B}'}(id_V) \in GL_n(K)$. Matrizen von φ bzgl. verschiedener Basen sind ähnlich.

- Klassifikations- und Normalformenprobleme
 - a) Entscheide, ob A, A' R-äquivalent (bzw. R-ähnlich) sind.
 - b) Gebe eine Menge $\mathcal{M} \in R^{m \times n}$ ("von Normalformen") an mit der Eigenschaft, dass jedes $A \in R^{m \times n}$ ($A \in R^{n \times n}$) zu genau einer Matrix $Norm(A) \in \mathcal{M}$ R-äquivalent (bzw. R-ähnlich) ist und einen Algorithmus, der Norm(A) berechnet.

Ist (b) gelöst, so ist damit auch (a) gelöst: A, A' äquivalent (bzw. ähnlich) $\Leftrightarrow Norm(A) = Norm(A')$.

Satz 1.1.1

 $A, A' \in K^{m \times n}$ sind äquivalent $\Leftrightarrow Rg(A) = Rg(A')$.

mit r Einsen, also r = Rg(A).

(Algorithmus: elementare Zeilen- und Spaltenoperationen anwenden.)

 $|\mathcal{M}| = Min(m, n) + 1$ ("die 1 wegen der Nullmatrix")

Beweis:

s. LA I

Bemerkung 1.1.2

 $A,A' \in K^{n \times n}$

A, A' ähnlich \Rightarrow

- Rg(A) = Rg(A')
- det(A) = det(A')
- Spur(A) = Spur(A')
- $\chi_A = \chi_{A'}$
- $\bullet \ \mu_A = \mu_{A'}$

Die Umkehrung gilt nicht!

 $\chi_A = \det(XE_n - A)$

Definition 1.1.3 (char. Matrix)

Ist $A \in K^{n \times n}$, so heißt $XE_n - A \in K[X]^{n \times n}$ charakteristische Matrix zu A.

Satz 1.1.2 (Frobenius)

Ist K Körper und sind $A, A' \in K^{n \times n}$, so sind A, A' ähnlich in $K^{n \times n} \Leftrightarrow XE_n - A, XE_n - A'$ sind äquivalent in $K[X]^{n \times n}$.

Beweis:

. . .

Beispiel 1.1.2

$$A = \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix}, A' = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$

$$XE_2 - A = \begin{bmatrix} X - 1 & 0 \\ -1 & X - 2 \end{bmatrix}$$

$$Mit P = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \text{ und } Q = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \text{ gilt:}$$

$$P(XE_2 - A) = \begin{bmatrix} X - 1 & 0 \\ X - 2 & X - 2 \end{bmatrix}, \text{ also}$$

$$P(XE_2 - A)Q = \begin{bmatrix} X - 1 & 0 \\ 0 & X - 2 \end{bmatrix} = XE_2 - A'.$$

Lemma 1.1.1

Ist
$$H \in K[X]^{n \times n}$$
, so kann man H eindeutig schreiben in der Form $H = X^r H_r + \ldots + X H_1 + H_0$ mit $H_i \in K^{n \times n}$ und $H_r \neq \underline{0}$, falls $H \neq \underline{0}$. Ist $A \in K^{n \times n}$, so sei $H(A) = A^r H_r + \ldots + A H_1 + H_0 \in K^{n \times n}$. $(H = \underline{0}, H(A) = \underline{0})$ $H' \in K[X]^{n \times n}, (H \cdot H')(A) = (H(A) \cdot H')(A)$, wobei $H(A) \cdot H' \in K[X]^{n \times n}$ ist.

Beweis:

. . .

Beispiel 1.1.3

$$H = \begin{bmatrix} 0 & X \\ X & 0 \end{bmatrix} = H' = X \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + \underline{0}$$

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$$

$$H^{2} = \begin{bmatrix} X^{2} & 0 \\ 0 & X^{2} \end{bmatrix} = X^{2}E_{2} + \underline{0}$$

$$H(A) = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$

$$H(A)^{2} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$$

$$H^{2}(A) = A^{2}E_{2} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \neq H(A)^{2}$$

$$(H(A) \cdot H)(A) = (\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} X \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix})(A)$$

$$= (X \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix})(A)$$

$$= \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$$

Corrolar 1.1.1

Ist
$$(XE_n - A') = F^{-1} \cdot (XE_n - A) \cdot G$$
 mit $F, G \in GL_n(K[X])$, so ist $A' = F(A)^{-1} \cdot A \cdot F(A)$.

Fragen 1.1.1

- a) Wie stellt man fest, ob $XE_n A'$ und $XE_n A$ äquivalent sind?
- b) Wie findet man $P,Q \in GL_n(K[X])$ mit $XE_n A' = P^{-1}(XE_n A)Q$?
- c) Auf welche Form kann man $XE_n A$ durch Multiplikation (von links und rechts) mit $P^{-1}, Q \in GL_n(K[X])$ bringen?
- d) Frage nach Äquivalenz von Matrizen über K[X]?

Gleiche Fragen (insbesondere d)) auch interessant für Matrizen aus $\mathbb{Z}^{n\times n}$ statt $K[X]^{n\times n}$.

1.2 Euklidische Ringe

Definition 1.2.1 (Int.bereich)

Ein kommutativer Ring R (genauer: $(R, +, \cdot)$) (hier: immer mit 1) heißt **Integritätsbereich** (oder -ring), wenn aus $a, b \in R$ mit $a \cdot b = 0 \Rightarrow a = 0$ oder b = 0.

Beispiel 1.2.1

 $\mathbbmss{Z}, K[X]$ für K Körper sind Integritätsbereiche.

Ein Teilring (Unterring) R eines Körpers ist ein Integritätsbereich.

 $\mathbb{Z}/_{6\mathbb{Z}}$ ist kein Integritätsbereich, denn $(2+6\mathbb{Z})(3+6\mathbb{Z})=\underline{0}$.

 $\mathbb{Z}/_{m\mathbb{Z}}$ ist kein Integritätsbereich, falls m>1 und m keine Primzahl ist.

Definition 1.2.2 (a|b, $a \sim b$, Einheit, R^* , irreduzibel)

Es sei R Integritätsbereich. $a,b\in R$

- a) a|b ("a **teilt** b") $\Leftrightarrow b = a \cdot c$ mit einem $c \in R$
- b) $a \sim b$ ("a assoziiert zu b") $\Leftrightarrow a|b$ und b|a
- c) a **Einheit** in $R \Leftrightarrow a$ ist invertierbar (oder: $a \sim 1$) $\mathbf{R}^* = \{a \in R | a \text{ Einheit}\}$
- d) $a \text{ irreduzibel} \Leftrightarrow a \neq 0 \text{ und } a \notin R^* \text{ und } a = b \cdot c \Rightarrow b \in R^* \text{ oder } c \in R^*$

$$(u \in R^*, a \in R \leadsto a = (au)u^{-1})$$

Beispiel 1.2.2

a) Sei $R = \mathbb{Z}$.

Dann:

2|6

 $2 \sim (-2)$

 $\mathbb{Z}^* = \{1, -1\}$

a irreduzibel $\Leftrightarrow a$ Primzahl oder -a Primzahl.

- b) K Körper, $K^* = K \setminus \{0\}$ $a \neq 0, b \in K \rightsquigarrow a|b$, denn $b = a(a^{-1}b)$
- c) K Körper, R = K[X]

 $R^* = \{ f \in K[X] | Grad(f) = 0 \} = \{ a \in K | a \neq 0 \}$

 $Grad(f\cdot g)=Grad(f)+Grad(g)$ (Dies impliziert sofort, dass $f\cdot g\neq 0$, denn das Nullpolynom hat keinen Grad.)

 $Grad(f) = 1 \Leftrightarrow f = aX + b, a \neq 0, b \in K \Rightarrow f$ irreduzibel, denn sonst $f = g \cdot h \Rightarrow Grad(g) + Grad(h) = 1$

 $X^2 + 1 \in \mathbb{R}[X]$ irreduzibel

 $X^2 + 1 \in \mathbb{C}[X]$ reduzibel, denn $X^2 + 1 = (X - i)(X + i)$.

Definition 1.2.3 (ggT)

R sei stets Integritätsbereich, $a, b \in R$.

 $R \ni d$ heißt (ein) **größter gemeinsamer Teiler** von a, b (Notation:

 $d \in ggT(a,b)$), wenn d|a und d|b und $(z \in R, z|a \text{ und } z|b) \Rightarrow z|d$.

Beispiel 1.2.3

$$a = 4, b = 6, R = \mathbb{Z}, \operatorname{dann} + 2 \in ggT(4, 6)$$

Bemerkung 1.2.1

Ein ggT von $a,b \in R$ ist, falls er existiert, bis auf Assoziiertheit eindeutig bestimmt, denn $d,d' \in ggT(a,b)$, d.h. d'|a,b also d|d' und d|a,b also d'|d. Dann:

 $\exists d_1, d_2 \in R \text{ mit } d' = d \cdot d_1 \text{ und } d = d'd_2.$

Einsetzen liefert:

 $d'=d'd_2d_1 \Leftrightarrow d'=(1-d_2d_1)=0 \Rightarrow d_2d_1=1 \qquad d_1,d_2 \in R^*$ unter der Annahme, dass $d'\neq 0$, was aber ein trivialer Fall ist.

Definition 1.2.4 (Euklidischer Ring)

R heißt **Euklidischer Ring**, wenn R Integritätsbereich ist und $\delta: R \setminus \{0\} \to \mathbb{N}_0 = \mathbb{Z}_{\geq 0}$ (gegeben ist) mit folgender Eigenschaft: Zu $a,b \in R,b \neq 0$ gibt es stets $q,r \in R$ mit $a=q \cdot b + r$ mit r=0 oder $\delta(r) < \delta(b)$.

Beispiel 1.2.4

a)
$$(\mathbb{Z}, \delta)$$
 mit $\delta(a) = |a|$ für $a \in \mathbb{Z} \setminus \{0\}$ ist Euklidischer Ring. $a, b \in \mathbb{Z}, b \neq 0$

$$\begin{array}{l} \underline{b>0} \\ \exists q \in \mathbb{Z} \text{ mit } q \leq \frac{a}{b} < q+1 \\ q \cdot b \leq a < qb+b \\ 0 \leq \delta(r) = r := a-qb < b = |b| = \delta(b) \\ \underline{b<0} \\ \text{analog} \end{array}$$

- b) R=K Körper, $\delta(a)=1$ $\forall a\in K\backslash\{0\}$ Zu $a,b\in K,b\neq 0$ existiert $q\in R$ mit $a=q\cdot b+0$
- c) $R = K[X], f \in R, f \neq 0, \delta(f) := Grad(f)$ Zu $f \neq 0$ und $g \in R$ existieren $q, r \in K[X]$ mit $g = q \cdot f + r$ und r = 0 oder Grad(r) < Grad(f).

$$\begin{array}{lll} g & = X^3 + 2X^2 + 1, f = 2X^2 + 2, & q_1 = \frac{1}{2}X \\ q_1 f & = X^3 + X \\ g - q_1 f & = 2X^2 - X + 1 & q_2 = 1 \\ q_2 f & = 2X^2 + 2 & \\ g - q_1 f - q_2 f & = -X - 1 = r \\ \underline{\text{Ergebnis:}} \\ \overline{q} = q_1 + q_2 = \frac{1}{2}X + 1 \\ g = qf + r, Grad(r) = 1 < 2 = Grad(f) \end{array}$$

d) $\mathbb{Z}[\sqrt{-5}]$ ist kein euklidischer Ring (s.Ü.).

e) $\mathbb{Z}[X]$ ist kein euklidischer Ring (s. später).

Bemerkung 1.2.2

In der Definition müssen q, r nicht eindeutig sein.

Satz 1.2.1 (Euklidischer Algorithmus)

Sei (R, δ) Euklidischer Ring. Zu $a, b \in R$ existiert stets ggT. Ist $b \neq 0$, so erhält man einen ggT von a und b durch folgenden Algorithmus:

$$\begin{array}{lll} a & = q_1b + r_2 & \delta(r_2) < \delta(b) \in \mathbb{N}_0 \\ b & = q_2r_2 + r_3 & \delta(r_3) < \delta(r_2) \\ r_2 & = q_3r_3 + r_4 & \delta(r_4) < \delta(r_3) \\ & \vdots & \vdots & \vdots \\ r_{n-2} & = q_{n-1}r_{n-1} + r_n & \delta(r_n) < \delta(r_{n-1}) \\ r_{n-1} & = q_nr_n \\ \text{Für ein } 1 \leq n \leq \delta(b) + 1. \end{array}$$

Dann ist $r_n \in ggT(a, b)$.

Beweis:

Verfahren bricht nach max. $\delta(b) + 1$ Schritten ab.

Satz 1.2.2 (Erweiterter Euklid. Algorithmus)

```
Erweiterter Euklid. Algorithmus
```

```
\begin{split} &Input: \ a,b \in R, R \ \text{Euklidischer Ring}, \ b \neq 0. \\ &Initialisiere \ r_0 := a, r_1 := b, i := 1, \begin{bmatrix} s_0 & t_0 \\ s_1 & t_1 \end{bmatrix} := E_2 \\ &repeat \\ &r_{i+1} := r_{i-1} - q_i r_i \ \text{mit} \ r_{i+1} = 0 \ \text{oder} \ \delta(r_{i+1}) < \delta(r_i) \\ &s_{i+1} := s_{i-1} - q_i s_i \\ &t_{i+1} := t_{i-1} - q_i t_i \\ &i := i+1 \end{split} &until \ r_i = 0 \\ &Output: \ d := r_{i-1}, \ s := s_{i-1}, \ t := t_{i-1} \\ &Dann \ \text{ist} \ d \in ggT(a,b) \ \text{und} \ d = s \cdot a + t \cdot b. \end{split} &\left[ \begin{array}{c} r_i \\ r_{i+1} \end{array} \right] = \left[ \begin{array}{c} 0 & 1 \\ 1 & -q_i \end{array} \right] \left[ \begin{array}{c} r_{i-1} \\ r_i \end{array} \right] = \underbrace{Q_i \cdot Q_{i-1} \cdot \ldots \cdot Q_1}_{s_{i+1} \ t_{i+1}} \left[ \begin{array}{c} a \\ b \end{array} \right]
```

1.3 Invariantenteiler

Vor: (R, δ) sei Euklid. Ring.

Definition 1.3.1 (Zeilen-/Spalten-Operationen)

Es sei $A \in \mathbb{R}^{m \times n}$. Man sagt $A' \in \mathbb{R}^{m \times n}$ ensteht aus A durch eine **R-elementare** Zeilen- (bzw. Spalten)-Operationen, wenn

- a) A' entsteht aus A durch Vertauschung von zwei verschiedenen Zeilen (bzw. Spalten).
- b) A' entsteht aus A durch Addition des s-fachen $(s \in R)$ einer Zeile (bzw. Spalte) zu einer anderen Zeile (bzw. Spalte).
- c) A' entsteht aus A durch Multiplikation einer Zeile (bzw. Spalte) mit $a \in R^*$.

Lemma 1.3.1

Entsteht A' aus A durch eine elem. Zeilen- (bzw. Spalten-) Operation, so ex. $Q \in GL_m(R)$ (bzw. $P \in GL_n(R)$) mit A' = QA (bzw. A' = AP). Insbesondere gilt: ensteht A' aus A durch mehrere Zeilen- und Spaltenoperationen, so sind A, A' äquivalent (Umkehrung gilt auch, später!)

Beweis:

. . .

Satz 1.3.1

 (R, δ) sei Euklid. Ring und $A \in R^{m \times n}$. Dann kann man A durch elem. Zeilenund Spaltenoperationen auf folgende Form bringen:

$$D = \begin{bmatrix} d_1 & & & & & 0 \\ & \ddots & & & & \\ & & d_r & & & \\ & & & 0 & & \\ & & & \ddots & \\ 0 & & & & 0 \end{bmatrix} \in R^{m \times n}$$

mit $d_1, \ldots, d_r \neq 0, r > 0$ und $d_i \in \mathbb{R}^*$, so oBda $d_i = 1$

Beweis:

. . .

Lemma 1.3.2

 (R,δ) sei Euklid. Ring, $0\neq d\in ggT(a,b), a,b\in R.$ $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ lässt sich durch elementare Zeilen- und Spaltenoperationen auf die Form $\begin{bmatrix} d & 0 \\ 0 & \frac{ab}{d} \end{bmatrix}$ bringen.

Beweis:

. . .

Satz 1.3.2 (Invariantenteilersatz)

 (R, δ) sei Euklid. Ring, $A \in \mathbb{R}^{m \times n}$.

Dann kann man A durch elementare Zeilen- und Spaltenoperationen auf die Form

$$D = \left[\begin{array}{ccc} d_1 & & 0 \\ & \ddots & \\ 0 & & d_r \end{array} \right]$$

mit $d_i \neq 0, r \geq 0$ und $d_i | d_{i+1}$ für $i = 1, \dots, r-1$ bringen.

(Diese d_i sind (s. Paragraph 4) bis auf Assoziiertheit eindeutig und heißen Invariantenteiler von A.)

Beweis:

. . .

Satz 1.3.3

a) Ist $A \in R^{n \times n}$ und ist A äquivalent zu $D = \begin{bmatrix} d_1 & 0 \\ & \ddots \\ 0 & d_n \end{bmatrix}$, so ist $det(A) = u \cdot d_1 \cdot \ldots \cdot d_n$ mit $u \in R^*$.

b) Ist $P \in GL_n(R)$ und R Euklid. Ring, so ist P ein Produkt von Elementarmatrizen.

c) $A,A'\in R^{m\times n}$ äquivalent $\Leftrightarrow A'$ entsteht aus A durch elementare Zeilenund Spaltenoperationen.

 $(\underline{\text{Vor.:}} R \text{ Euklid. Ring.})$

Beweis:

. . .

Beispiel 1.3.1

a)
$$R = \mathbb{Z}, A = \begin{bmatrix} 8 & 10 \\ 12 & 4 \end{bmatrix}$$

 $\delta(4)$ minimal

$$A \underset{\text{EZ}}{\sim} \begin{bmatrix} 12 & 4 \\ 8 & 10 \\ 4 & 12 \\ 10 & 8 \end{bmatrix}$$

$$A \underset{\text{ES}}{\sim} \begin{bmatrix} 12 & 4 \\ 8 & 10 \\ 4 & 12 \\ 10 & 8 \end{bmatrix}$$

$$A \underset{\text{ES}}{\sim} \begin{bmatrix} 12 & 4 \\ 8 & 10 \\ 4 & 12 \\ 10 & 8 \end{bmatrix}$$

$$A \underset{\text{ES}}{\sim} \begin{bmatrix} 4 & 0 \\ 10 & -22 \\ 4 & 0 \\ 2 & -22 \\ 2 & -22 \\ 4 & 0 \end{bmatrix}$$

$$A \underset{\text{ES}}{\sim} \begin{bmatrix} 2 & -22 \\ 4 & 0 \\ 2 & 0 \\ 4 & 44 \\ 2 & 0 \\ 0 & 44 \end{bmatrix}$$

Invariantenteiler sind 2, 4.

b)
$$K$$
 Körper, $R = K[X], A = \begin{bmatrix} X - 5 & 1 \\ 0 & X - 2 \end{bmatrix}$
 $\delta(1) = Grad(1) = 0$ minimal unter $Grad(a_{ij})$ mit $a_{ij} \neq 0$.

$$A \underset{\text{ES}}{\sim} \left[\begin{array}{ccc} 1 & X-5 \\ X-2 & 0 \end{array} \right] \\ \underset{\text{ES}}{\sim} \left[\begin{array}{ccc} 1 & 0 \\ X-2 & -(X-2)(X-5) \end{array} \right] \\ \underset{\text{EZ}}{\sim} \left[\begin{array}{ccc} 1 & 0 \\ 0 & (X-2)(X-5) \end{array} \right]$$

$$A = XE_2 - C, C = \begin{bmatrix} 5 & -1 \\ 0 & 2 \end{bmatrix} \in K^{2 \times 2}$$

$$\chi_C = \det(A) = u \cdot 1 \cdot (X - 2)(X - 5), u \in K[X]^* = K/\{0\}$$

Bemerkung 1.3.1

Ist $C \in K^{n \times n}$, so ist $\chi_C = u \cdot d_1 \cdot \ldots \cdot d_n$, wobei $d_1, \ldots, d_n \in K[X]$ die Invariantenteiler von $XE_n - C$ sind.

1.4 Eindeutigkeit der Invariantenteiler

Vor.: R sei Euklidischer Ring.

Definition 1.4.1 (k-Minor)

Ist $C \in \mathbb{R}^{m \times n}$. Ein **k-Minor** ist die Determinante einer $k \times k$ -Untermatrix; genauer:

$$J_{k}(l) = \{(i) = (i_{1}, \dots, i_{k}) | 1 \leq i_{1} < \dots < i_{k} \leq l \}$$

$$(i) \in J_{k}(m), (j) \in J_{k}(n)$$

$$C_{(j)}^{(i)} = \begin{bmatrix} c_{i_{1}j_{1}} & \dots & c_{i_{1}j_{k}} \\ \vdots & & \vdots \\ c_{i_{k}j_{1}} & \dots & c_{i_{k}j_{k}} \end{bmatrix}$$

$$C = [c_{ij}]$$

$$\Delta_{k}(C) = \{det(C_{(j)}^{(i)}) | (i) \in J_{k}(m), (j) \in J_{k}(n) \}$$

$$\Delta_{k}(C) = \text{Menge aller } k\text{-Minoren von } C$$

$$d_{k}(C) = ggt(\Delta_{k}(C))$$

Beispiel 1.4.1

$$\begin{split} R &= \mathbb{Z}, C = \begin{bmatrix} 5 & 4 & 7 \\ 4 & 4 & 0 \\ 0 & 0 & 12 \end{bmatrix} \\ \Delta_1(C) &= \{0, 4, 5, 7, 12\}, d_1(C) = \{ -\frac{1}{1} \} \\ \Delta_2(C) &= \{ \det \begin{bmatrix} 5 & 4 \\ 4 & 4 \end{bmatrix}, \det \begin{bmatrix} 5 & 4 \\ 0 & 0 \end{bmatrix}, \det \begin{bmatrix} 5 & 7 \\ 4 & 0 \end{bmatrix}, \det \begin{bmatrix} 4 & 7 \\ 4 & 0 \end{bmatrix}, \det \begin{bmatrix} 5 & 7 \\ 0 & 12 \end{bmatrix}, \\ \det \begin{bmatrix} 4 & 0 \\ 0 & 12 \end{bmatrix}, \det \begin{bmatrix} 4 & 4 \\ 0 & 0 \end{bmatrix} \} &= \{4, 0, -28, 60, 48\}, d_2(C) = \{ -\frac{1}{1} + 4 \} \\ \Delta_3(C) &= \{ \det \begin{bmatrix} 5 & 4 & 7 \\ 4 & 4 & 0 \\ 0 & 0 & 12 \end{bmatrix} d_3(C) = \{ -\frac{1}{1} + 4 + 12 \} = \{ -\frac{1}{1} + 4 + 12 \} \end{bmatrix} \end{split}$$

Satz 1.4.1

 $d_k(C)$ für $C \in \mathbb{R}^{m \times n}, k \leq Min\{m,n\}$, ändert sich nicht bei elementaren Zeilenoder Spaltenoperationen (angewandt auf C).

Beweis:

. . .

Satz 1.4.2

Es sei R Euklidischer Ring und $C \in R^{m \times n}$. Dann sind die Invariantenteiler von C bis auf Assoziiertheit eindeutig bestimmt.

 $C,C'\in R^{m\times n}$ äquivalent $\Leftrightarrow C,C'$ haben (bis auf Assoziiertheit) gleiche Invariantenteiler.

Beweis:

. . .

Beispiel 1.4.2

$$C = \begin{bmatrix} 5 & 4 & 7 \\ 4 & 4 & 0 \\ 0 & 0 & 12 \end{bmatrix} \widetilde{\mathrm{ES}} \begin{bmatrix} 1 & 4 & 7 \\ 0 & 4 & 0 \\ 0 & 0 & 12 \end{bmatrix} \widetilde{\mathrm{ESS}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 12 \end{bmatrix}$$

$$4|12$$

$$d_1 = 1, d_2 = 4, d_3 = 12$$

$$d_1d_2 = 4 \in d_2(C), d_1d_2d_3 = 4 \cdot 12 \in d_3(C)$$

1.5 Die rationale kanonische Form

K sei Körper, $A, A' \in K^{n \times n}$.

A,A' ähnlich (d.h. es ex. $P \in GL_n(K)$ mit $P^{-1}AP = A'$) $\overset{\S 1}{\Leftrightarrow} \overset{(\operatorname{Satz}\ 2)}{\Leftrightarrow} XE_n - A$ und $XE_n - A'$ sind in $K[X]^{n \times n}$ äquivalent $\overset{\S 4}{\Leftrightarrow} \overset{(\operatorname{Satz}\ 2)}{\Leftrightarrow}$ die Invariantenteiler von $XE_n - A$ und $XE_n - A'$ sind assoziiert \Leftrightarrow die normierten Invariantenteiler von $XE_n - A$ und $XE_n - A'$ sind gleich.

Damit ist das Ähnlichkeitsproblem (s. § 1) gelöst. $(f \in K[X] \text{ normiert} \Leftrightarrow f = X^m + \ldots + a_1X + a_0)$ $XE_n - A$ ist äquivalent zu $diag(d_1, \ldots, d_n)$ mit $d_1|d_2|\ldots|d_n$ (d_i Invariantenteiler). $\chi_A = det(XE_n - A) = ud_1 \cdot \ldots \cdot d_n$ mit $u \in K[X]^* = K \setminus \{0\}$ Da χ_A normiert ist und alle d_i normiert sind

$$\chi_A = d_1 \cdot \ldots \cdot d_n, d_1 | d_2 | \ldots | d_n$$
$$n = Grad(\chi_A) = Grad(d_1) + \ldots + Grad(d_n)$$

Beispiel 1.5.1

$$A \in \mathbb{Q}^{3 \times 3}, A' \in \mathbb{Q}^{3 \times 3}$$

 $\chi_A = (X^2 + 1)(X - 1) = \chi_{A'}$
Invariantenteiler von $XE_n - A$ sind $1, 1, (X^2 + 1)(X - 1)$.
Invariantenteiler von $XE_n - A'$ sind $1, 1, (X^2 + 1)(X - 1)$.
Also A, A' ähnlich.

Satz 1.5.1

- a) $A \in K^{n \times n}$ (K
 Körper) $\Rightarrow A$ ähnlich zu A^T
- b) $C \in \mathbb{R}^{n \times n}$ (R euklidischer Ring) $\Rightarrow C$ äquivalent zu C^T

Beweis:

. . .

Nun zum Normalformenproblem (s. § 1):

Erinnerung 1.5.1 (an LA I)

Ist $g = X^m + a_{m-1}X^{m-1} + \ldots + a_1X + a_0$ ein normiertes Polynom in K[X] vom Grad $m \ge 1$, so ist

$$A_g = \left[egin{array}{ccccc} 0 & \dots & 0 & -a_0 \\ 1 & \ddots & & & -a_1 \\ 0 & \ddots & & & & \\ \vdots & & & \vdots & \vdots \\ & & & 0 & \\ 0 & \dots & 0 & 1 & -a_{m-1} \end{array}
ight] \in K^{m imes m} extbf{ Begleitmatrix zu } g.$$

(z.B.
$$A_{X-a}=[a], \chi_{A_g}=\mu_{A_g}=g)$$
 XE_m-A_g ist äquivalent zu $diag(\underbrace{1,\dots,1}_{m-1},g)$ (s. Übung 2).

Satz 1.5.2

Ist K Körper, so ist jede Matrix $A \in K^{n \times n}$ ähnlich zu genau einer Matrix der Form

$$A_{g_1,...,g_r} = Diag(A_{g_1},...,A_{g_r}) = \begin{bmatrix} A_{g_1} & 0 \\ & \ddots & \\ 0 & A_{g_r} \end{bmatrix},$$

wobe
i A_{g_1},\dots,A_{g_r} Begleitmatrizen zu normierten Polynome
n g_1,\dots,g_r (mit Grad $\geq 1)$ mit $g_1|\dots|g_r.$

Dabei sind g_1, \ldots, g_r die von 1 verschiedenen normierten Invariantenteiler von $XE_n - A$. Ferner $g_1 \cdot \ldots \cdot g_r = \chi_A$ und $g_r = \mu_A$.

Beweis:

. . .

Definition 1.5.1 (rationale kanonische Form (Frobenius'sche Normalform))

 $A_{g_1,...,g_r}$ wie in Satz 2 heißt **rationale kanonische Form** (oder Frobenius'sche Normalform) von A.

Beispiel 1.5.2

$$K = \mathbb{Z}_2, A = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{bmatrix}$$

gesucht: rationale kanonische Form von A.

$$XE_4 - A = \begin{bmatrix} X+1 & 0 & 1 & 1 \\ 0 & X+1 & 1 & 1 \\ 1 & 0 & X+1 & 1 \\ 1 & 1 & 0 & X \\ 1 & 0 & X+1 & 1 \\ 1 & 1 & 0 & X \\ 1 & 0 & X+1 & 1 \\ 1 & 1 & X+1 & 0 & 1 \\ X+1 & 0 & 1 & 1 \\ 0 & 1 & 1 & X \\ 1 & 0 & 0 & 0 \\ 1 & X+1 & X+1 & 0 \\ X+1 & 0 & X^2 & X \\ 0 & 1 & 1 & X \end{bmatrix}$$

$$A'_{13}(X+1),A'_{14}(1) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & X+1 & X+1 & 0 \\ X+1 & 0 & X^2 & X \\ 0 & 1 & 1 & X \end{bmatrix}$$

$$A'_{13}(X+1),A'_{14}(1) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & X+1 & X+1 & 0 \\ 0 & 0 & X^2 & X \\ 0 & 1 & 1 & X \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & X \\ 0 & 0 & X^2 & X \\ 0 & X+1 & X+1 & 0 \end{bmatrix}$$

$$A'_{24}(X) = \begin{bmatrix} X+1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & X \\ 0 & 0 & X^2 & X \\ 0 & X+1 & X+1 & 0 \end{bmatrix}$$

$$A'_{34}(X) = \begin{bmatrix} X+1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & X & X^2 \\ 0 & 0 & X^2 + X & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & X & X^2 \\ 0 & 0 & X^2 + X & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & X & 0 \\ 0 & 0 & 0 & X & X^2 \end{bmatrix}$$

$$g_1 = X, g_2 = X^3 + X^2$$

$$A_{g_1,g_2} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

$$\mu_A = X^3 + X^2 = X^2(X+1)$$

Vorteile der rationalen kanonischen Form

- a) Leicht zu bestimmen. Nur elementare Operationen und (ggf.) Euklidischen Algorithmus.
- b) Absolut eindeutig.
- c) Geht über jedem Körper.

Nachteil: Die rationale kanonische Form ist nicht immer die "einfachste" Form.

Beispiel 1.5.3

$$\begin{split} A &= \left[\begin{array}{cc} 1 & 0 \\ 0 & 2 \end{array}\right] \in \mathbb{Q}^{2\times 2} \\ \chi_A &= (X-1)(X-2) = g_1 = X^2 - 3X + 2 \\ \text{rationale kanonische Form von } A \text{ ist } A_{g_1} = \left[\begin{array}{cc} 0 & -2 \\ 1 & 3 \end{array}\right] \end{split}$$

Dieser Nachteil wird nun umgangen:

1.6 Weierstraß-Normalform und Jordansche Normalform

Satz 1.6.1

Es sei (R, δ) ein euklidischer Ring. Dann gibt es zu jedem $a \in R \setminus \{0\}$, mit $a \notin R^*$ irreduzible Elemente $p_1, \ldots, p_r \in R$ mit $a = p_1 \cdot \ldots \cdot p_r$.

Ist auch $a = q_1 \cdot ... \cdot q_s$ mit $q_i \in R$ irreduzibel, so ist r = s und es gibt Permutation $\sigma \in S_r$ so, dass $p_i = u_i q_{\sigma(i)}$ mit $u_i \in R^*; p_i, q_{\sigma(i)}$ assoziiert.

Beweis:

. .

Man sagt: R euklidischer Ring ist faktoriell.

 $R = \mathbb{Z}[\sqrt{-5}]$ ist nicht faktoriell, da $6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$ und $2, 3, 1 + \sqrt{-5}, 1 - \sqrt{-5}$ irreduzibel. ($\mathbb{Z}[X]$ ist faktoriell, aber nicht euklidisch (ohne Beweis).)

Bemerkung 1.6.1

Für $R = \mathbb{Z}$ (Mittelstufe).

Definition 1.6.1 (Elementarteiler)

Es sei R euklidischer Ring, $C \in R^{m \times n}, d_1, \dots, d_r$ seien die von 0 und Einheiten verschiedenen Invariantenteiler.

 $d_j = p_1^{m_{j_1}} \cdot \ldots \cdot p_s^{m_{j_s}},$ wobei p_1, \ldots, p_s irreduzibel und paarweise nicht assoziiert.

Dann heißen die $p_i^{m_{j_i}} \neq 1$ Elementarteiler von C.

Bemerkung 1.6.2

Nach \S 4 und Satz 1 sind die Elementarteiler von C bis auf Reihenfolge und Assoziiertheit eindeutig.

Beispiel 1.6.1

a) $R=\mathbb{Z}, d_1=2, d_2=4, d_3=60$ Invariante
nteiler Elementarteiler $2, 2^2, 2^2, 3, 5$

b) Elementarteiler von $C \in \mathbb{Z}^{m \times n}$ seien

$$2^2, 3, 3^2, 3^2, 7$$

Invariantenteiler $d_{r-2} = 3, d_{r-1} = 3^2, d_r = 2^2 \cdot 3^2 \cdot 7 \Rightarrow r = 3$

Satz 1.6.2

Ksei Körper. Jedes $A \in K^{n \times n}$ ist ähnlich zu einer Matrix der Form

$$A_{q_1,\ldots,q_s} = Diag(A_{q_1},\ldots,A_{q_s})$$

mit normierten Polynomen q_i , die Potenzen von irreduziblen Polynomen sind $(q_i \text{ nicht notwendigerweise (paarweise) verschieden)}$. Die $q_i \text{ sind die Elementarteiler}$, der charakteristischen Matrix $XE_n - A$. $A_{q_1,...,q_s}$ ist bis auf Reihenfolge der q_i eindeutig und heißt Weierstraßsche Normalform von A.

Beweis:

. . .

Lemma 1.6.1

Ist
$$g = f \cdot h \in K[X], 1 \neq f; g, h$$
 normiert, $1 \in ggT(f, h)$ $\Rightarrow A_g$ ähnlich zu $\begin{bmatrix} A_f \\ A_h \end{bmatrix}$

Beweis:

. . .

Satz 1.6.3

Ist $A \in K^{n \times n}$ und χ_A zerfalle in Linearfaktoren. Dann ist A ähnlich zu einer Matrix der Form $J(A) = Diag(J_{r_1}(a_1), \ldots, J_{r_s}(a_s))$, wobei $a_1, \ldots, a_s \in K$ nicht notwendigerweise verschieden, $r_1, \ldots, r_s \in \mathbb{N}$, dabei ist $n = \sum_{i=1}^s r_i$,

$$\chi_A = \prod_{i=1}^s (X - a_i)^{r_i}$$
.

$$J_r(a) = \begin{bmatrix} a & & & 0 \\ 1 & a & & \\ & 1 & \ddots & \\ & & \ddots & \\ 0 & & 1 & a \end{bmatrix} \in K^{r \times r} \text{ Jordan-Block (oder -Kasten)}.$$

J(A) heißt Jordansche Normalform von A.

Beweis:

. . .

Bemerkung 1.6.3

Ist $K = \mathbb{C}$, so existiert zu jedem $A \in K^{n \times n}$ "die" Jordansche Normalform.

Beispiel 1.6.2

a) Jede Matrix $A \in \mathbb{C}^{2 \times 2}$ ist ähnlich zu einer Matrix der Form

Jede Matrix
$$A \in \mathbb{C}$$
 is a animer Z then invariate $J(A) = \begin{bmatrix} a_1 & 0 \\ 0 & a_2 \end{bmatrix}, \chi_A = (X - a_1)(X - a_2)$ oder $J(A) = \begin{bmatrix} a & 0 \\ 1 & a \end{bmatrix}, \chi_A = (X - a)^2 = \mu_A$
$$\mu_A = \begin{cases} \chi_A & \text{,falls } a_1 \neq a_2 \\ X - a_1 & \text{,sonst} \end{cases}$$

b) Jedes $A\in\mathbb{C}^{3\times3}$ ist ähnlich zu

$$J(A) = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \text{ oder } J(A) = \begin{bmatrix} a_1 \\ a_2 & 0 \\ 1 & a_2 \end{bmatrix} \text{ oder}$$

$$J(A) = \begin{bmatrix} a \\ 1 & a \\ 1 & a \end{bmatrix}$$

Wie berechnet man J(A)?

Existiert J(A)?

- 1) Bringe $XE_n A$ (durch elementare Zeilen- und Spalten-Operationen) auf Diagonal form $diag(1, ..., 1, \underbrace{g_1, ..., g_r}_{\in K[X], \text{normiert}})$.
- 2) Faktorisiere g_1, \ldots, g_r g_i = Produkt von $q_j^{m_j}, q_j$ irreduzibel, $Grad(q_j) > 1$, da J(A) sonst nicht existiert; $q_i^{r_j} = (X - a_j)^{r_i}, a_j \in K, r_i \in \mathbb{N}$ Elementarteiler Für jeden Elementarteiler $(X - a_j)^{r_i}$ füge auf Diagonale $J_{r_j}(a_j)$ ein.

Beispiel 1.6.3

$$XE_n - A$$
 äquivalent zu $diag(1, \dots, 1, \underbrace{X^4 - X^3}_{g_1}, \underbrace{(X - 1)^3}_{g_2})$

$$g_1 = X^3(X-1), g_2 = (X-1)^3$$

Elementarteiler sind
$$X - 1, (X - 1)^3, X^3$$
.
$$J(A) = Diag(\begin{bmatrix} 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix})$$

<u>Vort</u>eil:

 $J(A)^m$ für beliebiges m berechenbar.

$$Diag(Jr_1(a_1), \dots, J_{r_s}(a_s))^m = Diag(J_{r_1}(a_1)^m, \dots, J_{r_s}(a_s)^m)$$

$$A = J_r(a) = D + N \text{ mit } D = diag(\underbrace{a, \dots, a}_{s}) = aE_r, N = J_r(0) = \begin{bmatrix} 0 \\ 1 & \ddots \\ & \ddots \\ & & 1 & 0 \end{bmatrix}$$

Sei $K = \mathbb{C}$.

Definition 1.6.2 (exp(A))

Ist
$$A \in \mathbb{C}^{n \times n}$$
, so sei $exp(A) = e^A = \sum_{j=0}^{\infty} \frac{1}{j!} A^j = \lim_{m \to \infty} \sum_{j=0}^{m} \frac{1}{j!} A^j$

$$A = J_r(a) : \frac{1}{m!} A^m = \sum_{j=m-r+1}^{m} \frac{1}{m!} \binom{m}{j} a^j N^{m-j}$$

$$= \sum_{j=m-r+1}^{m} \frac{1}{(m-j)!} \frac{1}{j!} a^j N^{m-j}$$

$$= \sum_{j=m-r+1}^{m} \frac{1}{(m-j)!} \frac{1}{j!} a^{j} N^{m-j}$$

$$= \begin{bmatrix} \frac{1}{m!} a^{m} \\ \frac{1}{1!} \frac{1}{(m-1)!} a^{m-1} & \ddots \\ & \ddots & \\ & & \frac{1}{2!} \frac{1}{(m-1)!} a^{m-1} & \frac{1}{m!} a^{m} \end{bmatrix}$$

$$e^A = \begin{bmatrix} e^a & & & \\ e^a & \ddots & & \\ \frac{1}{2}e^a & \ddots & & \\ & \ddots & & \\ & & \ddots & \end{bmatrix}$$
 Allgemein: $e^A = Pe^{J(A)}P^{-1}$, falls $P^{-1}AP = J(A)$

$$\overline{K = \mathbb{R}, \mathbb{C}}$$
Gesucht $y_i : \begin{matrix} K & \to & K \\ t & \mapsto & y_i(t) \end{matrix}$ diffbar, $y_i = y_i(t), A \in K^{n \times n}$

$$y'=\left[\begin{array}{c}y_1'\\ \vdots\\ y_n'\end{array}\right]=A\left[\begin{array}{c}y_1\\ \vdots\\ y_n\end{array}\right]=Ay$$
 lineares Dgl.-System mit konstanten Koeffizierten

Lösungsraum von
$$\circledast$$
 ist $L = \{t \mapsto c_1 \begin{bmatrix} e^{a_1t} \\ 0 \\ \vdots \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 0 \\ e^{a_2t} \\ 0 \\ \vdots \\ 0 \end{bmatrix} + \ldots + c_n \begin{bmatrix} 0 \\ \vdots \\ 0 \\ e^{a_nt} \end{bmatrix} \}$

Eine Basis des Lösungsraums L finden sie in den Spalten von e^{Dt} , D=A.

$$e^{Dt} = \begin{bmatrix} e^{a_1t} & 0 \\ & \ddots & \\ 0 & & e^{a_nt} \end{bmatrix}$$

2. Fall:

A allgemein, $A \in K^{n \times n}$.

y' = Ay ist zu lösen.

$$z = P^{-1}y$$
 für $P \in GL_n(K)$

$$z = P^{-1}y$$
 für $P \in GL_n(K)$
 $z' = P^{-1}y' = P^{-1}Ay = P^{-1}APz$

$$z' = P^{-1}APz$$

y Lösung von $y' = Ay \Leftrightarrow z$ Lösung von $z' = P^{-1}APz$.

Wähle $P \in GL_n(K)$ so, dass $P^{-1}AP = J(A)$. ("Entkoppeln")

Sei also oBdA
$$J(A) = J_r(A) = \begin{bmatrix} a & 0 \\ 1 & \ddots & \\ & \ddots & \\ 0 & 1 & a \end{bmatrix}$$

$$z'_1 = az_1$$

 $z'_2 = z_1 + az_2$
 $z'_3 = z_2 + az_3$
:

$$e^{J(A)t} = \begin{bmatrix} e^{at} & 0 \\ te^{at} & \vdots \\ \frac{1}{2!}t^2e^{at} & \ddots & \vdots \\ \vdots & \vdots & \vdots \\ \frac{1}{(n-1)!}t^{n-1}e^{at} & \dots & te^{at} & e^{at} \end{bmatrix}$$

Spalten liefern Basis des Lösungsraums von $z' = J(A) \cdot z$.

1.7 Moduln über Ringen, Homomorphiesatz

 $\underline{\text{Vor.:}}$ R sei Ring mit 1.

Definition 1.7.1 (R-Modul)

Ein **R-Modul** ist eine Menge $\emptyset \neq M$ zusammen mit

$$\begin{array}{ccccc} +: \begin{array}{cccc} M \times M & \rightarrow & M \\ (m_1, m_2) & \mapsto & m_1 + m_2 \\ & R \times M & \rightarrow & M \\ \bullet: & (a, m) & \mapsto & a \cdot m \end{array}$$

(genauer: R-Links-Modul), wobei die Axiome (V1)-(V8) aus LA I gelten.

(V1)-(V4) besagt: (M, +) ist abelsche (d.h. kommutative) Gruppe.

(V5):
$$(a_1 \cdot a_2) \bullet m = a_1 \bullet (a_2 \bullet m)$$

(V6): $1 \bullet m = m$

 $(V7): a \bullet (m_1 + m_2) = a \bullet m_1 + a \bullet m_2$

(V8): $(a_1 + a_2) \bullet m = a_1 \bullet m + a_2 \bullet m$

(für alle $m, m_1, m_2 \in M, a, a_1, a_2 \in R$)

Beispiel 1.7.1

a) R = K Körper R-Modul = K-Vektorraum

b) $R = \mathbb{Z}$

"Z-Modul = abelsche Gruppe (additiv geschrieben)"

Sei (M, +) abelsche Gruppe.

$$n \bullet v := \begin{cases} \underbrace{v + v + \ldots + v}_{n} & \text{,falls } n \in \mathbb{N} \\ \underbrace{0 \in M}_{-\underbrace{(v + \ldots + v)}_{-n}} & \text{,falls } n < 0 \end{cases}$$

Nachrechnen ergibt (V5)-(V8) sind erfüllt.

(V1)-(V4) gelten nach Voraussetzung.

 $(M, +, \bullet)$ ist \mathbb{Z} -Modul.

Umgekehrt: $(M, +, \bullet)\mathbb{Z}$ -Modul $\Rightarrow (M, +)$ ist abelsche Gruppe.

Definition 1.7.2 (Erzeugnis, Untermodul)

M sei ein R-Modul (R Ring).

$$S = \{v_i | i \in I\} \subseteq M$$

 $< S>_R = \{\sum_{i \in I} a_i v_i | a_i \in R, a_i \neq 0 \text{ nur für endlich viele } i\}, der von S erzeugte$

 $M' \subseteq M$ heißt **Untermodul**, wenn $(M', +_{|M' \times M'}, \bullet_{|R \times M'})R$ -Modul

$$\Leftrightarrow (v, w \in M', a \in R \Rightarrow v + w \in M', \underline{0} \in M', av \in M')$$

R sei Ring mit 1. MR-Modul.

Definition 1.7.3 (Basis, freier R-Modul, endlich erzeugt)

$$B \subseteq M$$
 heißt **Basis** von M , wenn $\langle B \rangle_R = M$ und $\sum_{i=1}^m a_i v_i = 0, a_i \in R$,

 $v_i \in B, v_i \neq v_j$ für $i \neq j \Rightarrow a_1 = \ldots = a_m = 0$.

M heißt **freier R**-Modul, wenn M eine Basis hat.

M heißt **endlich erzeugt**, wenn $M = \langle S \rangle_R$ mit $|S| < \infty$.

Bemerkung 1.7.1

- a) R = K Körper $\Rightarrow MK$ -Modul ($\hat{=}K$ -Vektorraum) hat Basis, also M freier K-Modul.
- b) $R = \mathbb{Z}, \mathbb{Z}_n = \{0, \dots, n-1\}, +_n$ sei Addition modulo n $(\mathbb{Z}_n, +_n)\mathbb{Z}$ -Modul mit $n \bullet x = \underbrace{x +_n \dots +_n x}_n = 0 \ \forall x \in \mathbb{Z}_n$ \mathbb{Z}_n hat keine \mathbb{Z} -Basis. $\mathbb{Z}_n = <1>_{\mathbb{Z}}$ \mathbb{Z}_n ist kein freier \mathbb{Z} -Modul.
- c) $\mathbb{Z}^{n\times 1}$ ist freier \mathbb{Z} -Modul mit Basis $\{e_1,\ldots,e_n\}$. (Dies gilt auch für $R^{n\times 1}$ für beliebigen Ring).

Definition 1.7.4 (R-linear, Hom_R , R-Isomorphismus, Kern, Bild, Nebenklasse)

M, M'R-Moduln, $\varphi: M \to M'$ heißt **R-linear**, wenn

$$\varphi(sm_1 + m_2) = s\varphi(m_1) + \varphi(m_2) \ \forall s \in R, m_1, m_2 \in M$$

 $Hom_R(M, M') = \{ \varphi : M \to M' | \varphi R \text{-linear } \}$

Ist φ zusätzlich bijektiv, so heißt φ **R-Isomorphismus**.

 $M \cong_R M' \Leftrightarrow \exists \varphi : M \to M'R$ -Isomorphismus

Ist $\varphi \in Hom_R(M, M')$, so sei $Kern(\varphi) = \{v \in M | \varphi(v) = 0\}$,

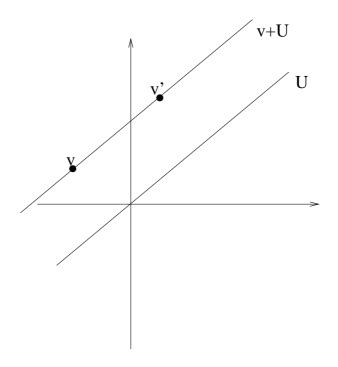
 $Bild(\varphi) = \{\varphi(v)|v \in M\}.$

Ist $U \leq_R M$ (UR-Untermodul), $v \in M$, so sei

 $v + U = \{v + u | u \in U\}$ Nebenklasse (oder Restklasse) (von v) nach U.

Beispiel 1.7.2

 $M = \mathbb{R}^2$



Bemerkung 1.7.2

$$v + U = v' + U \Leftrightarrow v - v' \in U$$

Satz 1.7.1 (Homomorphiesatz für (R-)Moduln)

M, M' seien R-Moduln.

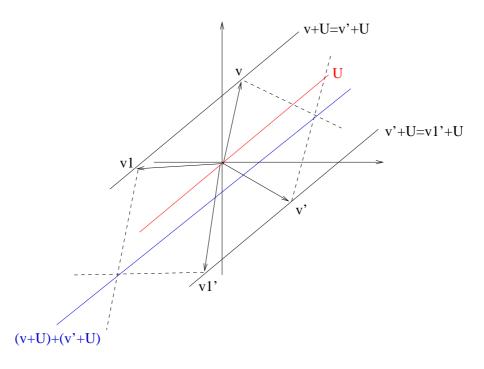
a) Ist $U \leq_R M$, so wird $M/U = \{v+U|v \in M\}$ (Faktormodul oder Restklassenmodul) zu einem R-Modul mit

$$(v+U)+(v'+U):=v+v'+U$$

$$a \bullet (v+U):=a \cdot v + U$$

 $\text{und } \pi = \pi_U: \begin{array}{ccc} R & \to & M/U \\ v & \mapsto & v+U \end{array} \text{ ist surjektiv R-linear (\mathbf{R}-$\mathbf{Epimorphismus}).}$

b) Sei $\varphi: M \to M'$ R-linear, so ist $Kern(\varphi) \leq_R M$ und $Bild(\varphi) \leq_R M'$ und $Bild(\varphi) \cong_R M/Kern(\varphi)$ ($\varphi(v) \to v + Kern(\varphi)$ ist Isomorphismus.)



Beweis:

Bemerkung 1.7.3

Ist R=K,V K-Vektorraum, $U\leq_K V$, so existiert $U'\leq V$ (Basisergänzungssatz mit V=U+U' und $U\cap U'=\{0\}$; jedes $v\in V$ hat eindeutige Darstellung als $v = u + u' \text{ mit } u \in U, u' \in U').$ v + U = u + u' + U = u' + U $V/U \iff U'$ $u' + U \iff u' \text{ bijektiv}$

$$\begin{array}{cccc} v+U=u+u+U=u+t\\ V/U&\leftrightarrow&U'\\ u'+U&\leftarrow&u' \end{array} \text{ bijektiv}$$

$$V/U\cong U'$$

Beispiel 1.7.3

a)
$$M = \mathbb{Z}, R = \mathbb{Z}, U = \mathbb{Z} \cdot 3 = \{0, -3, -6, ...\}$$

 $M/U = \mathbb{Z}_{/\mathbb{Z} \cdot 3} = \{z + 3\mathbb{Z} | z \in \mathbb{Z}\} = \{\underbrace{0 + 3\mathbb{Z}}_{3+3\mathbb{Z}}, 1 + 3\mathbb{Z}, \underbrace{2 + 3\mathbb{Z}}_{-1+3\mathbb{Z}}\}$

b)
$$M = \mathbb{Z}^{2 \times 1}, U = \langle \begin{bmatrix} 3 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \end{bmatrix} \rangle_{\mathbb{Z}} = \{ \begin{bmatrix} 3a \\ 2b \end{bmatrix} | a, b \in \mathbb{Z} \}, R = \mathbb{Z}$$

$$M/U = \{0 + U, \begin{bmatrix} 1 \\ 0 \end{bmatrix} + U, \begin{bmatrix} 2 \\ 0 \end{bmatrix} + U, \begin{bmatrix} 0 \\ 1 \end{bmatrix} + U, \begin{bmatrix} 1 \\ 1 \end{bmatrix} + U, \begin{bmatrix} 2 \\ 1 \end{bmatrix} + U \}$$

$$\overline{a} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} + U$$

$$\overline{a} + \overline{a} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} + U = \begin{bmatrix} 2 \\ 0 \end{bmatrix} + U$$

$$3\overline{a} = \overline{a} + \overline{a} + \overline{a} = \begin{bmatrix} 3 \\ 3 \end{bmatrix} + U = \begin{bmatrix} 0 \\ 1 \end{bmatrix} + U$$

$$4\overline{a} = \begin{bmatrix} 4 \\ 4 \end{bmatrix} + U = \begin{bmatrix} 0 \\ 1 \end{bmatrix} + U + \begin{bmatrix} 1 \\ 1 \end{bmatrix} + U = \begin{bmatrix} 1 \\ 0 \end{bmatrix} + U$$

$$5\overline{a} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} + U$$

$$6\overline{a} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} + U$$
Also: $M/U = \langle \overline{a} \rangle$

Definition 1.7.5 (direkte Summe)

Sind M_1, \ldots, M_n R-Moduln, so sei $M_1 \oplus M_2 \oplus \ldots \oplus M_n := \{(v_1, \ldots, v_n) | v_i \in M_i\}$ (direkte Summe) R-Modul mit

$$(v_1, \dots, v_n) + (v'_1, \dots, v'_n) := (v_1 + v'_1, \dots, v_n + v'_n)$$

 $a \in R, a(v_1, \dots, v_n) := (av_1, \dots, av_n)$

z.B.
$$\mathbb{Z}^{2\times 1} \cong \mathbb{Z} \oplus \mathbb{Z}$$

$$\left[\begin{array}{c} a \\ b \end{array} \right] \to (a,b)$$

Satz 1.7.2

Jeder endlich erzeugte R-Modul M (mit einem Erzeugendensystem (v_1, \ldots, v_n)) ist ein homomorphes Bild von $R^n = \underbrace{R \oplus \ldots \oplus R} \cong R^{n \times 1}$ ist also (nach Homo-

morphiesatz) isomorph zu R^n/U für einen Untermodul $U \leq_R R^n$. Ist M frei mit Basis(-folge) (v_1, \ldots, v_n) , dann ist $M \cong_R R^n$.

Beweis:

. . .

Bemerkung 1.7.4

Um alle endlich erzeugten R-Moduln bis auf Isomorphie zu erhalten, braucht man "nur" alle Untermoduln von R^n zu finden.

Satz 1.7.3

Es sei
$$e_i \in R^{m \times 1}$$
 und $U = \langle d_1 e_1, \dots, d_r e_r \rangle_R \leq R^{m \times 1}$.
Dann ist $R^{m \times 1}/U \cong_R R_{/Rd_1} \oplus \dots \oplus R_{/Rd_r} \oplus \underbrace{R \oplus \dots \oplus R}_{m-1}$.

Beweis:

٠.,

Bezeichnung 1.7.1 (Spaltenmodul)

Ist
$$A \in R^{m \times n}$$
, so sei $SM(A) = < \begin{bmatrix} a_{11} \\ \vdots \\ a_{m1} \end{bmatrix}, \dots, \begin{bmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{bmatrix} >$ Spaltenmodul.

Jeder endlich erzeugte Untermodul von $R^{m\times 1}$ ist von der Form SM(A) mit $A\in R^{m\times n}$ für ein n.

1.8 Moduln über Euklidischen Ringen

R sei euklidischer Ring.

M R-Modul erzeugt von m Elementen $\Rightarrow M \cong_R R^{m\times 1}/U$ $U \leq_R R^{m\times 1}$

Wenn U endlich erzeugt ist (von n Spalten), so ist U = SM(A) mit $A \in \mathbb{R}^{m \times n}$.

Lemma 1.8.1

- a) Ensteht $A' \in \mathbb{R}^{m \times n}$ aus $A \in \mathbb{R}^{m \times n}$ durch R-elementare Spaltenoperationen (d.h. $A' = AQ, Q \in GL_n(R)$), so ist SM(A) = SM(A').
- b) Entsteht $A' \in R^{m \times n}$ aus $A \in R^{m \times n}$ durch R-elementare Zeilenoperationen (d.h. $A' = PA, P \in GL_m(R)$), so ist $R^{m \times 1}/SM(A) \cong_R R^{m \times 1}/SM(A')$.

Beweis:

. . .

Folgerung 1.8.1

R sei euklidischer Ring, $A \in R^{m \times n}$ beliebig. $R^{m \times 1}/SM(A) \cong R/_{Rd_1 \oplus \ldots \oplus Rd_r \oplus \underbrace{R \oplus \ldots \oplus R}_{m-r}} \text{ mit } d_1 | \ldots | d_r \neq 0 \text{ Invariantenteiler } \neq 0 \text{ von } A.$

Beweis:

. . .

Fragen 1.8.1

Ist jeder Untermodul U von $R^{m\times 1}$ endlich erzeugt? Im Allgemeinen nein, aber bei euklidischen Ringen doch.

Satz 1.8.1

R sei euklidischer Ring. Ist $U \leq_R R$, so gibt es $d \in R$ mit $U = \langle d \rangle_R = R \cdot d$. ("Ein euklidischer Ring ist ein **Hauptidealring** (d.h. jedes Ideal in einem euklidischen Ring ist ein Hauptideal).")

Beweis:

. . .

Bemerkung 1.8.1 (Ideal, Hauptideal)

Ein Untermodul eines kommutativen Ringes heißt ein **Ideal**. Ein Untermodul der Form $R \cdot d$ heißt **Hauptideal**. (Ideale sind Kerne von Ringhomomorphismen.)

Satz 1.8.2

R sei euklidischer Ring, $U \leq_R R^m$. Dann hat U eine R-Basis (w_1, \ldots, w_n) mit $n \leq m$.

Beweis:

. . .

Satz 1.8.3 (Hauptsatz über endlich erzeugte Moduln über euklidischen Ringen)

Ist R euklidischer Ring und M endlich erzeugter R-Modul, so ist

$$M \cong R_{/Rd_1} \oplus \ldots \oplus R_{/Rd_r} \oplus \underbrace{R \oplus \ldots \oplus R}_{s \geq 0}$$

Satz 1.8.4 (Hauptsatz über endlich erzeugte abelsche Gruppen)

Jede endlich erzeugte abelsche Gruppe ist isomorph zu

$$A = \mathbb{Z}_{/\mathbb{Z}d_1} \oplus \ldots \oplus \mathbb{Z}_{/\mathbb{Z}d_r} \oplus \underbrace{\mathbb{Z} \oplus \ldots \oplus \mathbb{Z}}_s$$

mit $d_1 | \dots | d_r \neq 0$ (oBdA $d_i \in \mathbb{N}_{>1}$) und auch isomorph zu

$$\mathbb{Z}_{/\mathbb{Z}q_1} \oplus \ldots \oplus \mathbb{Z}_{/\mathbb{Z}q_l} \oplus \underbrace{\mathbb{Z} \oplus \ldots \oplus \mathbb{Z}}_s$$

mit Primzahlpotenzen q_1, \ldots, q_l .

Beispiel 1.8.1

- a) ges.: alle A mit |A| = 15 $\Rightarrow A \cong \mathbb{Z}_{/15\mathbb{Z}} \cong \mathbb{Z}_{/3\mathbb{Z}} \times \mathbb{Z}_{/5\mathbb{Z}}$
- b) ges.: alle A mit |A| = 4 $\Rightarrow A \cong \mathbb{Z}_{/2\mathbb{Z}} \oplus \mathbb{Z}_{/2\mathbb{Z}}$ oder $A \cong \mathbb{Z}_{/4\mathbb{Z}}$

Kapitel 2

Linear- und Bilinearformen

2.1 Dualraum

K Körper, VK-Vektorraum.

Definition 2.1.1 (Dualraum, Linearform)

Ist VK-Vektorraum, so sei $V^* = Hom_K(V, K).V^*$ heißt **Dualraum** zu V. (Generell ist $Hom_K(V, W)$ ein K-Vektorraum.) $\lambda \in V^*$, so heißt λ **Linearform** (oder lineares Funktional).

Lemma 2.1.1

Ist (v_1, \ldots, v_n) K-Basis von V (dim(V) = n), so sei

$$v_j^* \in V^*$$
 def. durch $v_j^*(v_i) = \begin{cases} 0 & \text{für } i \neq j \\ 1 & \text{für } i = j \end{cases}$ für $j = 1, \dots, n$.

Dann ist $(v_1^*, \dots, v_n^*) = B^*$ eine K-Basis von V^* .

Beweis:

. .

 \mathcal{B}^* heißt die zu \mathcal{B} duale Basis von V^* .

Folgerung 2.1.1

Ist $dim(V) = n < \infty$, so ist $V^* \cong V \cong K^{1 \times n}$.

Bemerkung 2.1.1

$$M_{\{1\}}^B(\lambda) = [a_1, \dots, a_n], \text{ für } \lambda \in V^*$$

$$\lambda = \sum_{i=1}^n a_i v_i^*$$

Bemerkung 2.1.2

Ist $dim(V) = \infty$, so ist $V^* \ncong V$.

Beispiel 2.1.1

 $V=K^{(\mathbb{N})}=\{(a_j)_{j\in\mathbb{N}}|\text{ mit }a_j\neq 0\text{ nur für endlich viele }j,a_j\in K\}$ $B=\{e_i|i\in\mathbb{N}\},e_i=(\delta_{ij})_{j=1}^\infty$ Basis von V Dann ist $V^*\cong K^{\mathbb{N}}$

 $\lambda \mapsto (\lambda(e_i))_{i=1}^{\infty}$

Ist $K = \mathbb{Q}$ oder $|K| < \infty$, so ist $K^{(\mathbb{N})}$ abzählbar, $K^{\mathbb{N}}$ nicht abzählbar.

Bemerkung 2.1.3

$$B = (v_1, \dots, v_n) \text{ Basis von } V, \lambda \in V^*, \lambda = \sum_{i=1}^n a_i v_i^*$$
$$(\lambda(v_i) = a_i, i = 1, \dots, n)$$
$$Kern(\lambda) = \{\sum_{i=0}^n x_i v_i | \underbrace{a_1 x_1 + \dots + a_n x_n = 0}_{\text{lin. homogene Gleichung}}\}$$

Zwei duale Aufgaben:

- a) geg.: lin. homogenes Gleichungssytem, also $\lambda_1, \dots, \lambda_m \in V^*$ ges.: Lösungsraum, also $\bigcap_{i=1}^m Kern(\lambda_i)$
- b) geg.: Teilraum U von Vges.: $\lambda_1, \dots, \lambda_m$ mit $U = \bigcap_{i=1}^m Kern(\lambda_i)$

Definition 2.1.2 (Annihilator)

Sei $M\subseteq V, VK$ -Vektorraum. $M^0=\{\lambda\in V^*|\lambda(v)=0 \text{ für alle } v\in M\}\subseteq V^* \text{ Annihilator von } M.$

Bemerkung 2.1.4

- a) $M^o < V^*$
- b) $M^0 = \langle M \rangle^0$

Satz 2.1.1 (Dualitätssatz)

Sei $dim(V) = n < \infty$. Dann gilt:

a)
$$U_1 \le U_2 \le V \Rightarrow U_2^0 \le U_1^0 \le V^*$$

b)
$$dim(U^0) = n - dim(U)$$

c)
$$(U_1 + U_2)^0 = U_1^0 \cap U_2^0$$

 $(U_1 \cap U_2)^0 = U_1^0 + U_2^0$

und die Abbildung $\Phi: \{U|U \text{ Teilraum von }V\} \xrightarrow{} \{\text{Teilräume von }V^*\}$ ist bijektiv.

Beweis:

. . .

Ist
$$dim(V) = n < \infty$$
 und $\varphi : V^* \to V$ Isomorphismus, so ist
$$\Phi' : \begin{array}{ccc} U & \to & \varphi(U^0) \\ \text{Teilräume von } V\} & \to & \{\text{Teilräume von } U\} \end{array}$$
 Bijektion mit
$$U_1 \leq U_2 \Leftrightarrow \Phi'(U_2) \leq \Phi'(U_1)$$

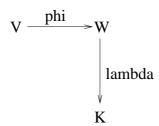
$$dim(\Phi'(U)) = n - dim(U)$$

Beispiel 2.1.2

 \mathbb{Z}_2^{10} hat $2^{10}-1=1023$ 9-dimensionale Teilräume. \mathbb{Z}_2^{10} hat 1023 1-dimensionale Teilräume.

Satz 2.1.2

Es sei $\varphi: V \to W$ K-lineare Abbildung. Dann ist die Abbildung $\varphi^T: \begin{array}{ccc} W^* & \to & V^* \\ \lambda & \mapsto & \lambda \circ \varphi \end{array}$ K-linear ("die zu φ **transponierte Abbildung**").



Ist $\mathcal{B} = (v_1, \ldots, v_n)$ Basisfolge von V und $\mathcal{C} = (w_1, \ldots, w_m)$ Basisfolge von W und $A = M_{\mathcal{C}}^{\mathcal{B}}(\varphi)$, so ist $M_{\mathcal{B}^*}^{\mathcal{C}^*}(\varphi^T) = A^T$.

Beweis:

Bemerkung 2.1.5

Ist $dim(V) = n < \infty$, so erhält man durch Wahl einer Basis von V und der dualen Basis von V^* einen Isomorphismus. Jeder Isomorphismus wird definiert durch eine Basis. Dagegen erhält man einen Isomorphismus $\alpha: V \to V^{**} = (V^*)^*$ $v \mapsto (\alpha_v : \lambda \to \lambda(v))$ (α_v "Auswertung an v; V^{**} Bidualraum) der unabhängig von jeder Basiswahl ist ("natürlicher Isomorphismus").

2.2 Bilinearformen

Definition 2.2.1 (Bilinearform)

Ist V ein K-Vektorraum, so heißt $\Phi: V \times V \to K$ Bilinearform, wenn

$$\begin{split} &\Phi(sv+v',w) = s\Phi(v,w) + \Phi(v',w) \\ &\Phi(v,sw+w') = s\Phi(v,w) + \Phi(v,w') \\ &\text{für alle } v,w,v',w' \in V, s \in K \text{ gilt.} \end{split}$$

Definition 2.2.2 (Gram-Matrix)

Ist $\mathcal{B} = (v_1, \dots, v_n)$ Basis von V, so heißt $M_{\mathcal{B}}(\Phi) = [\Phi(v_i, v_j)]_{1 \leq i, j \leq n}$ Gram-Matrix (Φ Bilinearform).

Bemerkung 2.2.1

$$\mathcal{B} = (v_1, \dots, v_n)$$
 wie oben. $A = M_{\mathcal{B}}(\Phi)$, so ist $\Phi(v, w) = x^T A y$, wobei $v = \sum x_i v_i, w = \sum y_i v_i, x = \begin{bmatrix} x_1 \\ \dots \\ x_n \end{bmatrix}, y = \begin{bmatrix} y_1 \\ \dots \\ y_n \end{bmatrix}.$

Bemerkung 2.2.2

Sind $\mathcal{B} = (v_1, \dots, v_n)$ und $\mathcal{B}' = (v_1', \dots, v_n')$ Basen von $V, \Phi : V \times V \to K$ Bilinearform

$$M_{\mathcal{B}'}(\Phi) = P^T \cdot M_{\mathcal{B}}(\Phi) \cdot P$$
 mit $P = M_{\mathcal{B}}^{\mathcal{B}'}(id_V)$ Basiswechselmatrix.

Definition 2.2.3 (kongruent)

 $A, A' \in K^{n \times n}$ heißen **kongruent**, wenn es ein $P \in GL_n(K)$ gibt mit

$$A' = P^T A P$$

(Dies ist eine Äquivalenzrelation.)

Beispiel 2.2.1

- a) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix}$ kongruent, aber nicht ähnlich in $\mathbb{Q}^{2\times 2}$.
- b) $\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$, $\begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$ sind ähnlich, aber nicht kongruent. $(P^TAP)^T = P^TA^TP$, also $A = A^T$ (A symmetrisch) und A, A' kongruent $\Rightarrow A' = A'^T$ (A' symmetrisch).

Folgerung 2.2.1

Ist A kongruent zu einer Diagonalmatrix $diag(t_1, ..., t_n)$, so muss A symmetrisch sein $(A^T = A)$.

Bemerkung 2.2.3

Ist $\Phi: V \times V \to K$ Bilinearform, so erhält man zu jedem $w \in V$ eine Linearform $\lambda_w: v \mapsto \Phi(v,w) \text{ und die Abbildung } \lambda: \begin{array}{ccc} w & \mapsto & \lambda_w \\ V & \to & V^* \end{array} \text{ ist lineare Abblidung.}$ $Bifo(V) = \{\Phi : V \times V \to K | \Phi \text{ Bilinearform } \} \cong Hom_K(V, V^*)$

Definition 2.2.4 (nicht ausgeartet)

 $\Phi \in Bifo(V)$ heißt **nicht ausgeartet**, wenn aus

$$\Phi(v, w) = 0$$
 für alle $v \in V$ folgt: $w = 0$

Beispiel 2.2.2

$$V = \mathbb{R}^{n \times 1}, \mathcal{B} = (e_1, \dots, e_n)$$

a)
$$\Phi$$
 gegeben durch $M_{\mathcal{B}}(\Phi) = \begin{bmatrix} 1 & & \\ & \ddots & \\ & & 1 \end{bmatrix}$

b)
$$\Phi$$
 gegeben durch $M_{\mathcal{B}}(\Phi)=\left[\begin{array}{cccc} 1 & & & \\ & \ddots & & \\ & & 1 & \\ & & & -1 \end{array}\right]$

$$\Phi\left(\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}\right) = \sum_{i=1}^{n-1} x_i y_i - x_n y_n$$

Bemerkung 2.2.4

 $\Phi: V \times V \to K \text{ nicht ausgeartet } (dim(V) = n) \Leftrightarrow Rang(M_{\mathcal{B}}(\Phi)) = n = dim(V).$

2.3 Orthogonalität

Definition 2.3.1 (symmetrisch, alternierend, orthogonal, Orthogonalraum, Radikal, isotrop)

 $\Phi \in Bifo(V)$ heißt symmetrisch (bzw. alternierend), wenn

$$\Phi(v,w) = \Phi(w,v)$$
 (bzw. $\Phi(v,w) = -\Phi(w,v)$) für alle $v,w \in V$ gilt.

 $v, w \in V$ heißen **orthogonal bzgl.** Φ , wenn $\Phi(v, w) = 0$.

(Bem.: Φ ist symmetrische Relation.)

 $v \perp w \ (v, w \ \text{orthogonal}) \Rightarrow w, v \ \text{orthogonal})$

Ist $M \subseteq V$, so sei $M^{\perp} = \{v \in V | \Phi(v, u) = 0 \ \forall u \in M\} \leq V$ (Orthogonalraum zu M).

 $V^{\perp} =: Rad(\Phi) = \{v \in V | \Phi(v, w) = 0 \ \forall w \in V\}$ (Radikal)

(Φ nicht ausgeartet, wenn $Rad(\Phi) = \{0\}$.) $v \in V$ **isotrop** (bzgl. Φ) $\underset{\text{Def.}}{\Leftrightarrow} \Phi(v, v) = 0$.

Bemerkung 2.3.1

 $\mathcal{B} = (v_1, \dots, v_n)$ Basis von $V, M_{\mathcal{B}}(\Phi) = A$

 Φ symmetrisch $\Leftrightarrow A = A^T \ (A \text{ symmetrisch})$

 Φ alternierend $\Leftrightarrow A^T = -A$ (A schiefsymmetrisch)

 Φ nicht ausgeartet $\Leftrightarrow Rg(A) = n$

Beispiel 2.3.1

$$V = \mathbb{R}^{n \times 1}, \Phi\left(\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}\right) = \sum_{i=1}^{n-1} x_i y_i - x_n y_n$$

$$\left\{x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^{n \times 1} | x \text{ isotrop } \right\} = \left\{x | x_n^2 = \sum_{i=1}^{n-1} x_i^2\right\}$$
(Für $n = 3$: Kegel (s. Skizze in der Mitschrift))

Satz 2.3.1

Sei $\Phi: V \times V \to K$ symmetrisch oder alternierend, $dim(V) = n < \infty, U \subseteq V$.

$$\dim(U) + \dim(U^\perp) = \dim(V) + \dim(U \cap \underbrace{Rad(\Phi)}_{V^\perp})$$

Beweis:

. . .

Beispiel 2.3.2

$$\begin{split} &\Phi(\begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix}, \begin{bmatrix} y_1\\ y_2\\ y_3 \end{bmatrix}) = x_1y_1 + x_2y_2 - x_3y_3 \text{ ("Lorentz-Metrik")} \\ &U = < \begin{bmatrix} 0\\ 1\\ 1 \end{bmatrix} > \\ &U^\perp = < \begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}, \begin{bmatrix} 0\\ 1\\ 1 \end{bmatrix} > \\ &Rad(\Phi) = \{0\} \ (\leadsto dim(U) + dim(U^\perp) = dim(V)) \\ &V \neq U + U^\perp \\ &U \cap U^\perp = U \end{split}$$

Corrolar 2.3.1

Es enthalte U keine isotropen Vektoren, oder $\Phi_{|U \times U}$ sei nicht ausgeartet, dann ist

$$V = U + U^{\perp}$$
 und $U \cap U^{\perp} = \{0\}$ $(V \cong U \oplus U^{\perp})$.

Beweis:

. . .

2.4 Symmetrische Bilinearformen, Orthogonalisierung

Fragen 2.4.1

Wenn $\Phi: V \times V \to K$ symmetrische $Bifo, \mathcal{B} = (v_1, \ldots, v_n)$ Basis von V, existiert "Orthogonalbasis" $\mathcal{B}' = (w_1, \ldots, w_n)$ mit $M_{\mathcal{B}'}(\Phi) = diag(t_1, \ldots, t_n)$ (d.h. $\Phi(v_i, v_j) = 0$ für $i \neq j$)?

Beispiel 2.4.1

Es sei K Körper "der Charakteristik 2", d.h. $1+1=0\in K$ (z.B. $K=\mathbb{Z}_2$, Körper aus Übung LA I mit 4 Elementen). Φ gegeben auf $M_{\mathcal{B}}(\Phi)=\begin{bmatrix}0&1\\1&0\end{bmatrix}$. $\mathcal{B}=(v_1,v_2),v=x_1v_1+x_2v_2\in V$

$$\begin{split} \Phi(v,v) &= x_1^2 \Phi(v_1,v_1) + x_2^2 \Phi(v_2,v_2) + x_1 x_2 \Phi(v_1,v_2) + x_2 x_1 \Phi(v_2,v_1) \\ &= x_1 x_2 (1+1) \\ &= 0 \end{split}$$

Jeder Vektor in V ist isotrop.

Wäre $\mathcal{B}' = (w_1, w_2)$ Orthogonalbasis: $M_{\mathcal{B}'} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ nicht kongruent zu $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

Satz 2.4.1

Ist $Char(K) \neq 2$ (d.h. $1+1 \neq 0 \in K$), $dim(V) = n < \infty$, Φ symmetrische Bifo. Dann existiert Orthogonalbasis $\mathcal{B} = (v_1, \dots, v_n)$

$$M_{\mathcal{B}} = diag(t_1, \dots, t_n)$$

(d.h.
$$\Phi(v_i, v_j) = \delta_{ij}t_i$$
)

Beweis:

. .

Corrolar 2.4.1

 $Char(K) \neq 2, A = A^T \in K^{n \times n} \Rightarrow A$ kongruent zu Diagonalmatrix $\exists P \in GL_n(K) : P^TAP = diag(t_1, \dots, t_n)$ (P Basiswechselmatrix)

Fragen 2.4.2

Wie findet man $diag(t_1, \ldots, t_n)$ und P? Nach Kapitel 1 \S 3 Satz 3 ist jedes $P \in GL_n(K)$ Produkt von Elementarmatrizen E_i : $P = E_1 \cdot \ldots \cdot E_r$ A gegeben, $E_r^T \cdot \ldots \cdot E_1^T \cdot A \cdot E_1 \cdot \ldots \cdot E_r$ E_i sind von der Form

i)
$$D_i(c) = diag(1, ..., 1, c, 1..., 1) = D_i(c)^T, c \neq 0 \in K \text{ (d.h. } c \in K^*)$$

 $A \mapsto D_i(c)^T A D_i(c)$

Multipliziere i-te Spalte von A mit c und danach (oder davor) i-te Zeile

$$A_{ij}(t)^T = A_{ji}(t)$$

$$A \mapsto A_{ij}(t)^T A A_{ij}(t)$$

Addiere t-faches der i-ten Spalte zur j-ten Spalte und danach t-faches der i-ten Zeile zur j-ten Zeile.

 $A \mapsto V_{ij}^T A V_{ij}$

Vertausche i-te und j-te Spalte von A, i-te und j-te Zeile von A.

Verfahren:

- "gekoppelte elementare Spalten- und Zeilenoperationen"
- "modifizierter Gaußalgorithmus"
- "quadratische Ergänzung"

Beispiel 2.4.2

$$A = \begin{bmatrix} 0 & -1 & 1 \\ -1 & -9 & 2 \\ 1 & 2 & 5 \end{bmatrix} \in \mathbb{Q}^{3 \times 3}$$

Vertausche 1. und 3. Spalte und Zeile:

$$E_1 = \left[\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{array} \right]$$

$$AE_{1} = \begin{bmatrix} 1 & -1 & 0 \\ 2 & -9 & -1 \\ 5 & 2 & 1 \end{bmatrix}$$

$$A' = E_{1}^{T} A E_{1} = \begin{bmatrix} 5 & 2 & 1 \\ 2 & -9 & -1 \\ 1 & -1 & 0 \end{bmatrix}$$

$$E_{3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$E_{1}E_{2}E_{3} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & -\frac{2}{5} & -\frac{1}{5} \end{bmatrix}$$

$$A'E_{2}E_{3} = \begin{bmatrix} 5 & 0 & 0 \\ 2 & -\frac{49}{5} & -\frac{7}{5} \\ 1 & -\frac{7}{5} & -\frac{1}{5} \end{bmatrix}$$

$$A'' = E_{3}^{T}E_{2}^{T}AE_{2}E_{3} = \begin{bmatrix} 5 & 0 & 0 \\ 0 & -\frac{49}{5} & -\frac{7}{5} \\ 0 & -\frac{7}{5} & -\frac{1}{5} \end{bmatrix}$$

$$E_{1}E_{2}E_{3}E_{4} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -\frac{1}{5} & -\frac{2}{5} \end{bmatrix}$$

$$A''' = E_{4}^{T}A''E_{4} = \begin{bmatrix} 5 & 0 & 0 \\ 0 & -\frac{1}{5} & -\frac{7}{5} \\ 0 & -\frac{7}{5} & -\frac{49}{5} \end{bmatrix}$$

$$E_{1}E_{2}E_{3}E_{4}E_{5} = \begin{bmatrix} 0 & 1 & -7 \\ 0 & 0 & 1 \\ 1 & -\frac{1}{5} & 1 \end{bmatrix}$$

$$E_{5}^{T}A'''E_{5} = \begin{bmatrix} 5 & 0 & 0 \\ 0 & -\frac{1}{5} & 0 \\ 0 & 0 & 0 \end{bmatrix} = D = P^{T}AP$$
(Test: die Matrix sollte symmetrisch bleibe

(Test: die Matrix sollte symmetrisch bleiben)

Definition 2.4.1 (zu Φ gehörige quadratische Form, Quadrik)

Ist $\Phi: V \times V \to K$ (symmetrische) Bifo, so heißt die Abbildung

$$Q_{\Phi}: V \to K \text{ mit } Q_{\Phi}(v) = \Phi(v, v)$$

die zu Φ gehörige quadratische Form und für $c \in K$ beliebig

$$Q = \{v \in V | Q_{\Phi}(v) = c\}$$
 (homogene) **Quadrik** zu Φ (und c).

Beispiel 2.4.3

A wie oben,
$$V = \mathbb{R}^{3\times 1}$$
, $\mathcal{B} = (e_1, e_2, e_3)$ Standardbasis, $M_{\mathcal{B}}(\Phi) = A$

$$v = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$Q_{\Phi}(v) = \Phi(v, v)$$

$$= \begin{bmatrix} x_1, x_2, x_3 \end{bmatrix} \begin{bmatrix} 0 & -1 & 1 \\ -1 & -9 & 2 \\ 1 & 2 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$= -9x_2x_2 + 5x_3x_3 + 2(-1x_1x_2 + x_1x_3 + 2x_2x_3)$$

$$Q = \left\{v = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \middle| -9x_2^2 + 5x_3^2 - 2x_1x_2 + 2x_1x_3 + 4x_2x_3 = 1\right\}$$

$$\mathcal{B}' = (v_1, v_2, v_3)$$

$$M_{\mathcal{B}'}^{B'}(id) = P = \begin{bmatrix} 0 & 1 & -7 \\ 0 & 0 & 1 \\ 1 & -\frac{1}{5} & 1 \end{bmatrix}$$

$$M_{\mathcal{B}'}(\Phi) = \begin{bmatrix} 5 & 0 & 0 \\ 0 & -\frac{1}{5} & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$Q = \left\{v = \sum y_i v_i \middle| \Phi(v, v) = 5y_1^2 - \frac{1}{2}y_2^2 = 1\right\}$$

$$v_1 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, v_2 = \begin{bmatrix} 1 \\ 0 \\ -\frac{1}{5} \end{bmatrix}$$

$$-9x_2^2 + 5x_3^2 - 2x_1x_2 + 2x_1x_3 + 4x_2x_3 = -9(x_2 + s_1x_1 + s_3x_3)^2$$

$$\Rightarrow -2 \cdot 9s_1 = -2, -2 \cdot 9s_3 = 4$$

Im neuen Koordinatensystem (v_1, v_2, v_3) : hyperbolischer Zylinder (vgl. Mitschrift).

2.5 Symmetrische Bilinearformen über angeordneten Körpern

Definition 2.5.1 (angeordneter Körper)

Ein **angeordneter Körper** ist ein Körper K zusammen mit einer Teilmenge $P\subseteq K$ ("Positivitbereich, Positivitätsmenge") mit

i)
$$K = P \stackrel{\cdot}{\cup} \{0\} \stackrel{\cdot}{\cup} \{-x|x \in P\}$$

ii)
$$x, y \in P \Rightarrow x + y \in P, x \cdot y \in P$$

Schreibweise:

•
$$x > 0 \Leftrightarrow x \in P$$

•
$$x > y \Leftrightarrow x - y \in P$$

Bemerkung 2.5.1

Ist K angeordneter Körper mit Positivbereich P.

a)
$$x^2 \in P$$
 für alle $x \in K \setminus \{0\}$

b)
$$1 \in P$$

c)
$$x \in P \Rightarrow x^{-1} \in P$$

Beweis:

. . .

Bemerkung 2.5.2

- a) Ist " $char(K) \neq 0$ ", d.h. $\exists p \in \mathbb{N} \text{ mit } p \cdot 1 = \underbrace{1 + \ldots + 1}_{p} = 0$ $\Rightarrow K \text{ nicht angeordnet, denn } 1 + \ldots + 1 \in P \text{ und } 0 \not\in P$
- b) In \mathbb{Q} und \mathbb{R} gibt es nur je einen Positivitätsbereich P mit (i) und (ii), denn in $\mathbb{Q}: n, m \in \mathbb{N} \Rightarrow n, m, m^{-1} \in P, \frac{n}{m} \in P$ und in $\mathbb{R}: P_1 := \{x^2 | x \neq 0\} \subseteq P$ und $\mathbb{R} = P_1 \cup \{0\} \cup (-P_1)$
- c) \mathbb{C} nicht angeordneter Körper, denn $-1 = i^2 \in P$ für Positivitätsbereich $1 \in P$ (Widerspruch)

Definition 2.5.2 (positiv definit, negativ definit)

 $\Phi: V \times V \to K$ (K angeordneter Körper) heißt **positiv definit** (bzw. **negativ definit**, wenn $\Phi(v, v) > 0$ (bzw. $\Phi(v, v) < 0$) für alle $0 \neq v \in V$.

Satz 2.5.1 (Trägheitssatz von Sylvester)

Sei $\Phi: V \times V \to K$ symmetrische Bifo (K angeordnet), $dim(V) = n < \infty$. Dann existiert Basis $\mathcal{B} = (v_1, \dots, v_n)$ mit

$$M_{\mathcal{B}}(\Phi) = diag(d_1, \dots, d_p, d'_1, \dots, d'_q, 0, \dots, 0)$$

mit $d_i > 0$ und $d'_i < 0$ und p, q sind eindeutig bestimmt.

((p,q) Signatur)

Ist $K = \mathbb{R}$, so kann man $d_1 = \ldots = d_p = 1$ und $d'_1 = \ldots = d'_q = -1$ wählen.

Beweis:

. . .

Beispiel 2.5.1

Seien $n=2, K=\mathbb{R}, A\in\mathbb{R}^{2\times 2}$ symmetrisch, $A=M_{\mathcal{B}}(\Phi)$. Dann ist A kongruent

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} (2,0), \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} (0,2), \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} (1,1), \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} (1,0), \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} (0,1), \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} (0,0)$$

Die Wertepaare hinter den Matrizen sind die Signaturen (der zugehörigen Linearformen). Die zugehörigen Linearformen Φ sind bei den ersten drei Matrizen nicht ausgeartet und bei den letzten drei ausgeartet.

Folgerung 2.5.1

Seien $\Phi: V \times V \to K$ symmetrische $Bifo, \mathcal{B}$ Basis von $V, dim(V) = n < \infty$.

$$\Phi$$
 positiv definit $\Rightarrow det(M_{\mathcal{B}}(\Phi) > 0$

Klar, falls
$$\mathcal{B}$$
 Orthogonalbasis \mathcal{B}_1 .
 $M_{\mathcal{B}}(\Phi) = P^T M_{\mathcal{B}_1}(\Phi) P, P = M_{\mathcal{B}}^{\mathcal{B}_1}(id) \in GL_n(K)$
 $det(M_{\mathcal{B}}(\Phi)) = \underbrace{(det(P))^2}_{>0} \underbrace{det(M_{\mathcal{B}_1}(\Phi))}_{>0,\text{falls }\Phi \text{ pos. def.}}$
 $(det(P^T) = det(P))$

Satz 2.5.2

 $\Phi: V \times V \to K$ (Kangeordneter Körper) symmetrische Bifo $M_{\mathcal{B}}(\Phi) = A \in K^{n \times n}$

$$\Phi$$
 positiv definit $\Leftrightarrow det(A_k) > 0$ für $k = 1, ..., n$ mit $A_k = \begin{bmatrix} a_{11} & ... & a_{1k} \\ \vdots & & \vdots \\ a_{k1} & ... & a_{kk} \end{bmatrix}$, $A = A_n$

Beweis:

. . .

Folgerung 2.5.2

$$\Phi: V \times V \to K$$
positiv definit $\Rightarrow \Phi(v,w)^2 \leq \Phi(v,v) \cdot \Phi(w,w)$ mit Gleichheit $\Leftrightarrow (v,w)$ linear abhängig (Im Fall $K = \mathbb{R}$: Cauchy-Schwarz-Ungleichung.)
Beweis: . . .

2.6 Isometriegruppen - orthogonale Gruppen

Definition 2.6.1 (Isometriegruppe)

Sei $\Phi: V \times V \to K$ Bifo. $G(\Phi) = \{\varphi \in GL(V) | \Phi(\varphi(v), \varphi(w)) = \Phi(v, w) \ \forall v, w \in V\}$ Isometriegruppe zu Φ . $A \in K^{n \times n}, G(A) = \{F \in GL_n(K) | F^T A F = A\}$ $(GL(V) = \{\varphi \in End(V) | \varphi \text{ Isomorphismus}\})$ Ist (V, Φ) euklidischer Raum, d.h. Φ symmetrisch, positiv definit, V \mathbb{R} -Vektorraum, so heißt $G(\Phi) = O(\Phi) = O(V, \Phi)$ orthogonale Gruppe.

Lemma 2.6.1

- a) $G(\Phi)$ und G(A) sind Gruppen.
- b) $dim(V) = n < \infty$ und $A = M_{\mathcal{B}}(\Phi)$, so ist $G(\Phi) \to G(A)$ $\varphi \mapsto M_{\mathcal{B}}(\varphi)$ Isomorphismus.
- c) Sind $A, A' \in K^{n \times n}$ kongruent, d.h. $\exists P \in GL_n(K)$ mit $A' = P^TAP$, so ist $G(A) \cong G(A')$. $G(A) = G(c \cdot A)$ für $c \in K, c \neq 0$

d) Ist
$$\Phi$$
 nicht ausgeartet, $det(A) \neq 0$, $dim(V) < \infty$ so gilt für $\varphi \in G(\Phi): det(\varphi) = \stackrel{+}{-} 1$
$$F \in G(A): det(A) = \stackrel{+}{-} 1$$

Beweis:

. . .

Definition 2.6.2 (n-dim. orthogonale Gruppe, n-dim. Lorentzgruppe)

$$D = D_{pqr} = diag(\underbrace{1,\dots,1}_{p},\underbrace{-1,\dots,-1}_{q},\underbrace{0,\dots,0}_{r}) \in \mathbb{R}^{n\times n}, n = p+q+r \text{ (Grammatrix von } \Phi: \mathbb{R}^{n} \times \mathbb{R}^{n} \to \mathbb{R} \text{ mit Signatur } (p,q))$$

$$O_{pqr}(\mathbb{R}) = \{F \in GL_{n}(K) | F^{T}D_{pqr}F = D_{pqr} \}$$
 oBdA $p \geq q$
$$O_{n}(\mathbb{R}) = O_{n00}(\mathbb{R}) \text{ n-dimensionale orthogonale Gruppe}$$

$$L_{n}(\mathbb{R}) = O_{(n-1)10}(\mathbb{R}) \text{ n-dimensionale Lorentzgruppe}$$

Beispiel 2.6.1

$$n = 2$$

$$O_2(\mathbb{R}) = O_{200}(\mathbb{R})$$

$$O_{101}(\mathbb{R}) = O_{011}(\mathbb{R})$$

$$L_2(\mathbb{R})$$

$$O_{002}(\mathbb{R}) = GL_2(\mathbb{R})$$

Zu $O_2(\mathbb{R})$:

$$\frac{f}{B} = (v_1, v_2) \text{ \mathbb{R}-Basis von } V, \Phi : V \times V \to \mathbb{R}$$

$$\text{mit } M_{\mathcal{B}}(\Phi) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$1 = \Phi(v_1, v_1) = \Phi(\varphi(v_1), \varphi(v_1)), 0 = \Phi(v_1, v_2) = \Phi(\varphi(v_1), \varphi(v_2))$$

$$\text{Sei } \varphi \in G(\Phi).M_{\mathcal{B}}(\varphi) = \begin{bmatrix} a & c \\ b & d \end{bmatrix} = F$$

$$(1) \ 1 = a^2 + b^2$$

$$(2) \ 1 = c^2 + d^2$$

$$(3) \ 0 = ac + bd$$

$$\text{vgl. Skizzen in Mitschrift}$$

$$\cos(\Theta) = \frac{1}{2}(e^{i\Theta} + e^{-i\Theta})$$

$$\sin(\Theta) = \frac{1}{2i}(e^{i\Theta} - e^{-i\Theta})$$

$$\text{Aus } (3) \text{ folgt:}$$

$$\begin{bmatrix} c \\ d \end{bmatrix} = e \begin{bmatrix} -b \\ a \end{bmatrix}$$

$$F = \begin{bmatrix} a & -eb \\ b & ea \end{bmatrix}$$

$$F = \begin{bmatrix} a & -eb \\ b & ea \end{bmatrix}$$

$$F = \begin{bmatrix} \cos(\Theta) & -\sin(\Theta) \\ \sin(\Theta) & \cos(\Theta) \end{bmatrix}, \text{ Drehung um } \Theta$$

$$F=\begin{bmatrix}cos(\Theta)&sin(\Theta)\\sin(\Theta)&-cos(\Theta)\end{bmatrix}$$
, Spiegelung an der Geraden mit Winkel $\frac{\Theta}{2}$ $F^2=E_2$

$$\frac{\operatorname{Zu} L_2(\mathbb{R}):}{\mathcal{B} = (v_1, v_2) \ \mathbb{R} - \operatorname{Basis} \ \operatorname{von} V, \Phi : V \times V \to \mathbb{R}}$$

$$\operatorname{mit} M_{\mathcal{B}}(\Phi) = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$1 = \Phi(v_1, v_1) = \Phi(\varphi(v_1), \varphi(v_1)), 0 = \Phi(v_1, v_2) = \Phi(\varphi(v_1), \varphi(v_2))$$

$$\operatorname{Sei} \varphi \in G(\Phi) \cdot M_{\mathcal{B}}(\varphi) = \begin{bmatrix} a & c \\ b & d \end{bmatrix} = F$$

$$(1) \ 1 = a^2 - b^2$$

$$(2) \ -1 = c^2 - d^2$$

$$(3) \ 0 = ac - bd$$

$$\operatorname{vgl. Skizzen in Mitschrift}$$

$$\operatorname{cosh}(\Theta) = \frac{1}{2}(e^{\Theta} + e^{-\Theta})$$

$$\operatorname{sinh}(\Theta) = \frac{1}{2}(e^{\Theta} - e^{-\Theta})$$

$$\operatorname{Aus} \ (3) \ \operatorname{folgt:}$$

$$\begin{bmatrix} c \\ d \end{bmatrix} = e \begin{bmatrix} -b \\ a \end{bmatrix}$$

$$F = \begin{bmatrix} a & -eb \\ b & ea \end{bmatrix}$$

$$F = \begin{bmatrix} a & -eb \\ b & ea \end{bmatrix}$$

$$F = \begin{bmatrix} \cosh(\Theta) & \sinh(\Theta) \\ \sinh(\Theta) & \cosh(\Theta) \end{bmatrix}, \det = 1$$

$$F = \begin{bmatrix} \cosh(\Theta) & \sinh(\Theta) \\ \sinh(\Theta) & -\cosh(\Theta) \end{bmatrix}, \det = 1$$

$$\operatorname{oder}$$

$$F = \begin{bmatrix} \cosh(\Theta) & -\sinh(\Theta) \\ \sinh(\Theta) & -\cosh(\Theta) \end{bmatrix}, \det = 1$$

$$\operatorname{oder}$$

$$F = \begin{bmatrix} \cosh(\Theta) & -\sinh(\Theta) \\ \sinh(\Theta) & -\cosh(\Theta) \end{bmatrix}, \det = -1$$

$$F = \begin{bmatrix} \cosh(\Theta) & -\sinh(\Theta) \\ \sinh(\Theta) & -\cosh(\Theta) \end{bmatrix}, \det = -1$$

$$F = \begin{bmatrix} \cosh(\Theta) & -\sinh(\Theta) \\ \sinh(\Theta) & -\cosh(\Theta) \end{bmatrix}, \det = -1$$

$$F = \begin{bmatrix} \cosh(\Theta) & -\sinh(\Theta) \\ \sinh(\Theta) & -\cosh(\Theta) \end{bmatrix}, \det = -1$$

Satz 2.6.1

Sei (V, Φ) euklidischer n-dimensionaler \mathbb{R} -Vektorraum, $\Phi: V \times V \to \mathbb{R}$ positiv

Ist
$$\varphi \in O(\Phi) \cong O_n(\mathbb{R})$$
, so existiert ON-Basis $\mathcal{B} = (v_1, \dots, v_n)$ mit $M_{\mathcal{B}}(\varphi) = Diag(1, \dots, 1, -1, \dots, -1, D(\Theta_1), \dots, D(\Theta_r)) = D$, wobei $D(\Theta_i) = \begin{bmatrix} cos(\Theta) & -sin(\Theta) \\ sin(\Theta) & cos(\Theta) \end{bmatrix}, \Theta \notin \mathbb{Z}\pi$.

Beweis:

Corrolar 2.6.1

Ist $A \in O_n(\mathbb{R})$ $(A^T A = E)$, so existiert $P \in O_n(\mathbb{R})$ mit $P^{-1}AP = D$ mit D wie in Satz 1.

Lemma 2.6.2

Ist
$$\varphi \in O(\Phi)$$
 und $\Phi(v,v) \neq 0 \ \forall v \in V \setminus \{0\}$ und $t \in K$ Eigenwert von φ , so ist $t = \stackrel{+}{-} 1$, denn $\Phi(\varphi(v), \varphi(v)) = \Phi(v, v)$. Ist $\varphi(v) = tv, v \neq 0$, so ist $\Phi(\varphi(v), \varphi(v)) = t^2 \underbrace{\Phi(v, v)}_{\neq 0} = \underbrace{\Phi(v, v)}_{\neq 0} \leadsto t^2 = 1$.

Folgerung 2.6.1

Ist (V, Φ) 3-dimensionaler euklidischer Vektorraum und $\varphi \in O(\Phi)$, so ist, falls $det(\varphi) = 1$ ist, φ eine Drehung um Achse $< v_1 >$ mit Drehwinkel Θ , d.h. \exists ON-Basis $\mathcal{B} = (v_1, v_2, v_3), M_{\mathcal{B}}(\varphi) = \begin{bmatrix} 1 \\ D(\Theta) \end{bmatrix}, \Theta \in \mathbb{R}, -\pi \leq \Theta \leq \pi$ (Drehwinkel), oder falls $det(\varphi) = -1$ ist, eine Drehung um die Achse $< v_1 >$ "gefolgt" von einer Spiegelung an $< v_1 >$ d.h. es existiert ON-Basis

$$\mathcal{B} = (v_1, v_2, v_3) \text{ von } V \text{ mit } M_{\mathcal{B}}(\varphi) = \begin{bmatrix} -1 & 0 & 0 \\ 0 & & \\ 0 & D(\Theta) \end{bmatrix} = \begin{bmatrix} -1 & & \\ & 1 & \\ & & 1 \end{bmatrix} \begin{bmatrix} 1 & & \\ & D(\Theta) \end{bmatrix}$$

Kapitel 3

Tensorprodukte

3.1 Ko- und Kontravariante Vektoren und Tensorgrößen

Es sei V n-dim. K-Vektorraum mit Basen $\mathcal{B} = (v_1, \ldots, v_n)$ und $\mathcal{B}'=\mathcal{C}=(w_1,\ldots,w_n).$

$$V \ni v = \sum_{i=1}^{n} x_i v_i = \sum_{i=1}^{n} y_i w_i$$
, wobei die "alten" Koordinaten und die y_i die "neuen" Koordinaten sind.

Frage: Wie erhält man die y_i aus den x_i ?

 $\overline{\text{Mit Basiswechselmatrix }} M_{\mathcal{B}}^{\mathcal{B}'}(id_V) = [a_i^i]$

$$w_j = \sum_{i=1}^n a_j^i v_i$$

Wir schreiben jetzt:
$$v = \sum_{i=1}^{n} x^{j} v_{j} = \sum_{i=1}^{n} y^{j} w_{j}$$

$$v = \sum_{j=1}^{n} y^{j} \sum_{i=1}^{n} a_{j}^{i} v_{i} = \sum_{i=1}^{n} (\sum_{j=1}^{n} a_{j}^{i} y^{j}) v_{i}$$

Koeffizientenvergleich:
$$x^i = \sum_{j=1}^n a_j^i y^j$$

$$y^{i} = \sum_{j=1}^{n} \tilde{a}_{j}^{i} x^{j} \text{ mit } [\tilde{a}_{j}^{i}] = M_{\mathcal{B}'}^{\mathcal{B}}(id_{V}) = [a_{j}^{i}]^{-1}$$

"Kontravariantes Transformationsverhalten" ("über Kreuz")

Es sei jetzt
$$V^* = Hom(V, K)$$
 Dualraum zu V .
 $\mathcal{B}^* = (v^1, \dots, v^n)$ sei zu \mathcal{B} duale Basis, also $v^i(v_j) = \delta_{ij}$.
 $\mathcal{C}^* = (w^1, \dots, w^n)$ sei zu \mathcal{C} duale Basis.
 $\lambda \in V^*, \lambda = \sum_{i=1}^n x_i v^i = \sum_{i=1}^n y_i w^i, x_i, y_i \in K$

Definition 3.1.1 (kontra-, kovariante Vektorgröße)

V sei n-dim. K-VR.

 $\mathfrak{B} = \text{Menge aller } K\text{-Basen von } V.$

Eine kontravariante (bzw. kovariante) Vektorgröße ist eine Abbildung $g: \mathfrak{B} \to K^n$ mit folgender Eigenschaft:

Ist
$$\mathcal{B} = (v_1, \dots, v_n) \in \mathfrak{B}, \mathcal{B}' = (w_1, \dots, w_n) \in \mathfrak{B}$$

$$\circledast w_j = \sum_{i=1}^n a_j^i v_i$$

$$[a_j^i] = A = M_{\mathcal{B}'}^{\mathcal{B}'}(id_V), [\tilde{a}_j^i] = A^{-1}$$
so ist $g(\mathcal{B}')(i) = g(\mathcal{B}')^i = \sum_{j=1}^n \tilde{a}_j^i g(\mathcal{B})^j$
(bzw. $g(\mathcal{B}')(j) = g(\mathcal{B}')_j = \sum_{i=1}^n a_j^i g(\mathcal{B})_i$)

Beispiel 3.1.1

a)
$$v \in V, g_v : \mathfrak{B} \to K^n$$

$$g_v(\mathcal{B}) = (x^1, \dots, x^n), \text{ falls } v = \sum_{i=1}^n x^i v_i$$

$$g_v(\mathcal{B})^i = x^i$$

$$g_v \text{ kontravariante Vektorgröße.}$$

b) Sei
$$\lambda \in V^* = Hom(V, K)$$
.
$$g_{\lambda}(\mathcal{B}) = (\lambda(v_1), \dots, \lambda(v_n))$$

$$g_{\lambda}(\mathcal{B}')_j = \lambda(w_j) = \sum_{i=1}^n a^i_j \lambda(v_i) = \sum_{i=1}^n a^i_j g_{\lambda}(\mathcal{B})_i$$

$$g_{\lambda} \text{ kovariante Vektorgröße.}$$

c) Ist $\Phi: V \times V \to K$ Bilinearform. $g_{\Phi}: \mathfrak{B} \to K^{n \times n}$ $g_{\Phi}(\mathcal{B}) = M_{\mathcal{B}}(\Phi) = [\Phi(v_i, v_j)]$ $g_{\Phi}(\mathcal{B})(i, j) = g_{\Phi}(\mathcal{B})_{ij} = \Phi(v_i, v_j)$ $M_{\mathcal{B}'}(\Phi) = A^T M_{\mathcal{B}}(\Phi) A$ $g_{\Phi}(\mathcal{B}')(i, j) = \sum_{k=1}^{m} \sum_{l=1}^{n} a_i^k \Phi(v_k, v_l) a_j^l$ $g_{\Phi}(\mathcal{B}')_{ij} = \sum_{k=1}^{m} \sum_{l=1}^{n} a_i^k a_j^l g_{\Phi}(\mathcal{B})_{kl}$

d)
$$\varphi \in End(V), g_{\varphi} : \mathfrak{B} \to K^{n \times n}$$

$$g_{\varphi}(\mathcal{B}) = M_{\mathcal{B}}(\varphi)$$

$$g_{\varphi}(\mathcal{B}')(i,j) = \sum_{k=1}^{n} \sum_{l=1}^{n} \tilde{a}_{k}^{i} g_{\varphi}(\mathcal{B})(k,l) a_{j}^{l}$$

$$M_{\mathcal{B}'}(\varphi) = A^{-1} M_{\mathcal{B}}(\varphi) A$$

$$g_{\varphi}(\mathcal{B}')_{j}^{i} = \sum_{k=1}^{n} \sum_{l=1}^{n} \tilde{a}_{k}^{i} a_{j}^{l} g_{\varphi}(\mathcal{B})_{l}^{k}$$

Definition 3.1.2 (r-fach kontra-, s-fach kovariante Tensorgröße)

 \mathfrak{B} = Menge der Basen von V (V n-dim. K-Vektorraum). Eine **r-fach kontra-,** s-fach kovariante Tensorgröße (der Stufe r+s) ist eine Abbildung

$$g:\mathfrak{B}\to K \xrightarrow{r+s} = Abb(\underbrace{\{1,\ldots,n\}\times\ldots\times\{1,\ldots,n\}}_{r+s},K) \text{ mit}$$

$$g(\mathcal{B}')(i_1,\ldots,i_1,j_1,\ldots,j_s) =: g(\mathcal{B}')^{i_1,\ldots,i_r}_{j_1,\ldots,j_s} =$$

$$\sum_{k_1,\ldots,k_r=1}^n \sum_{l_1,\ldots,l_s=1}^n \tilde{a}^{i_1}_{k_1}\ldots\tilde{a}^{i_r}_{k_r}a^{l_1}_{j_1}\ldots a^{l_s}_{j_s}g(\mathcal{B})^{k_1,\ldots,k_r}_{l_1,\ldots,l_s}$$

Beispiel 3.1.2

- c) 2-fach kovariant (Bilinearformen)
- d) 1-fach kontra-, 1-fach kovariant (Endomorphismen)

3.2 Tensorprodukte

Definition 3.2.1 (multilinear)

 V_1,\ldots,V_m,T seien K-Vektorräume oder K-Moduln, wobei K kommutativer Ring. Eine Abbildung $\Phi:V_1\times\ldots\times V_m\to T$ heißt **multilinear**, wenn $\Phi(v_1,\ldots,v_i+sv_i',\ldots,v_m)=\Phi(v_1,\ldots,v_i,\ldots,v_m)+s\Phi(v_1,\ldots,v_i',\ldots,v_m)$ für alle $1\leq i\leq m$ und alle $v_j,v_j'\in V_j$.

Beispiel 3.2.1

- a) T = K, m = 1 Linearform T = K, m = 2 Bilinearform (hier: $V_1 = V_2$)
- b) Determinantenform $D: \underbrace{K^n \times \ldots \times K^n}_n \to K$
- c) $V_1 = Hom_K(V', V''), V_2 = Hom_K(V, V'), V, V', V''$ K-Vektorräume. $(\psi, \varphi) \mapsto \psi \circ \varphi$ $V_1 \times V_2 \to V_3 = T = Hom_K(V, V'')$
- d) \mathcal{A} sei K-Algebra. $\mathcal{A} \times \mathcal{A} \to \mathcal{A}$ $(a, b) \mapsto a \cdot b$ bilinear

Bemerkung 3.2.1

Ist $\Phi: V_1 \times \ldots \times V_m \to T$ multilinear und $\varphi: T \to W$ K-linear (W K-Modul), so ist $\varphi \circ \Phi$ multilinear. $\varphi \circ \Phi: V_1 \times \ldots \times V_m \to W$

Satz 3.2.1

Zu gegebenen K-Moduln W_1, \ldots, W_m (K kommutativer Ring) existiert ein K-Modul T und $\tau: W_1 \times \ldots \times W_m \to T$ multilinear, mit folgender "universeller" Eigenschaft \circledast :

Zu jeder multilinearen Abbildung

 $\Phi:W_1\times\ldots\times W_m\to W$ (Wbeliebiger K-Modul) existiert eine (durch $\Phi)$ eindeutig bestimmte lineare Abbildung

$$\varphi: T \to W \text{ (d.h. } \varphi \in Hom_K(T, W)) \text{ mit } \Phi = \varphi \circ \tau$$

Also: $\{\Phi: W_1 \times \ldots \times W_m \to W | \text{ multilinear}\} \leftrightarrow Hom_K(T, K) \text{ mit } \Phi \mapsto \varphi, \text{ falls } \Phi = \varphi \circ \tau.$

 $\underline{1.~\mathrm{Beweis:}}$ (nur für endlich dimensionale $K\textsc{-}\mathrm{Vektorr\ddot{a}ume})$

. . .

2. Beweis: (allgemein)

. . .

Definition 3.2.2 (Tensorprodukt)

Sind T, τ wie in Satz 1, so heißt (T, τ) **Tensorprodukt** von W_1, \ldots, W_m . $T =: W_1 \otimes \ldots \otimes W_m, \tau(w_1, \ldots, w_m) = w_1 \otimes \ldots \otimes w_m$.

Satz 3.2.2

Sind $\tau: W_1 \times \ldots \times W_m \to T$ und $\tau': W_1 \times \ldots \times W_m \to T'$ multilinear mit der universellen Eigenschaft \circledast (d.h. es gilt auch $\exists^1 \varphi' \in Hom(T', W)$ mit $\Phi = \varphi \circ \tau'$), dann gibt es genau einen Isomorphismus $\psi: T \to T'$ mit $\tau' = \psi \circ \tau$. ("Eindeutigkeit des Tensorproduktes")

Beweis:

. . .

3.3 Eigenschaften und Beispiele von Tensorprodukten

 $\underline{\text{Vor.:}}\ W_1,\ldots,W_m$ seien K-Moduln, K kommutativer Ring.

Bemerkung 3.3.1

Es gilt in $W_1 \otimes \ldots \otimes W_m = T$:

- a) $w_1 \otimes \ldots \otimes w_j + sw'_j \otimes \ldots \otimes w_m$ = $w_1 \otimes \ldots \otimes w_j \otimes \ldots \otimes w_m + sw_1 \otimes \ldots \otimes w'_j \otimes \ldots \otimes w_m$ für $w_j, w'_j \in W_j, s \in K$ (" τ multilinear")
- b) Ist ein $w_j = 0 \in W_j$, so ist $w_1 \otimes \ldots \otimes w_j \otimes \ldots \otimes w_m = \underline{0} \in T$ Im Allgemeinen gilt die Umkehrung nicht.
- c) $T = \langle w_1 \otimes \ldots \otimes w_m | w_i \in W_i \rangle_K$

- d) Ist $\langle B_j \rangle_K = W_j, B_j$ Erzeugendensystem, so ist $T = \langle w_1 \otimes \ldots \otimes w_m | w_i \in B_i, \ldots \rangle_K$
- e) Sind in (d) alle B_i Basen, so ist auch $\mathcal{B} = \{(w_1 \otimes \ldots \otimes w_m) | w_i \in B_i\}$ Basis

 $dim_K(W_i) = n_i < \infty, dim(T) = n_1 \cdot \ldots \cdot n_m$

(Bem.: Die Angabe der Dimension von W_i impliziert, dass W_i ein Vektorraum ist.)

Warnung: Im Allgemeinen gilt nicht

 $\overline{W_1 \otimes \ldots \otimes W_m} = \{w_1 \otimes \ldots \otimes w_m | w_i \in W_i, 1 \leq i \leq n\}.$

Richtig: $W_1 \otimes \ldots \otimes W_m = \langle w_1 \otimes \ldots \otimes w_m | \ldots \rangle_K$

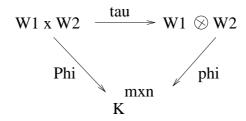
Beispiel 3.3.1

 $W_1 = K^{m\times 1}, W_2 = K^{n\times 1}, K$ Körper $\Phi: W_1\times W_2 \to K^{m\times n}$

$$(v, w) \mapsto vw^T = [x_i y_j]_{1 \le i \le m, 1 \le j \le n}, \text{ falls } v = \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix}, w = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}.$$

 Φ bilinear.

Nach Definition (Satz 1 §2)



existiert genau eine lineare Abbildung $\varphi: W_1 \otimes W_2 \to K^{m \times n}$ mit

 $\varphi(w_1 \otimes w_2) = \Phi(w_1, w_2) = w_1 w_2^T.$

 (e_i^j) sei Standardbasis von W_j , j=1,2.

 $\Phi(e_i^1, e_k^2) = E_{ik} = e_i^1 \otimes e_k^2$

 $\{E_{ij}|\ldots\}$ Basis von $K^{n \times m}$.

Also: $Bild(\varphi)$ enthält Erzeugendensystem (sogar Basis) von $K^{m \times n}$.

Also φ surjektiv.

Da $dim(W_1 \otimes W_2) = m \cdot n = dim(K^{m \times n})$, ist φ auch injektiv $\Rightarrow \varphi$ Isomorphismus.

Dabei $\varphi: \begin{array}{cccc} K^{m\times 1} \otimes K^{n\times 1} & \to & K^{m\times n} \\ v \otimes w & \mapsto & vw^T \end{array}$

Aber $\{vw^T|v\in K^{m\times 1}, w\in K^{n\times 1}\}\stackrel{\text{"Ubung}}{=}\{A\in K^{m\times n}|Rang(A)\leq 1\}$

Ist also $A \in K^{m \times n}$ mit Rang(A) = r > 1, so ist

 $\varphi^{-1}(A) \in K^{m \times 1} \otimes K^{n \times 1} \setminus \{v \otimes w | v \in K^{m \times 1}, w \in K^{n \times 1}\}$

$$t = \left[\begin{array}{c} 1 \\ 0 \end{array}\right] \otimes \left[\begin{array}{c} 1 \\ 0 \end{array}\right] + \left[\begin{array}{c} 0 \\ 1 \end{array}\right] \otimes \left[\begin{array}{c} 0 \\ 1 \end{array}\right] \in K^{m \times 1} \otimes K^{n \times 1}$$

Dies ist $\neq v \otimes w \ \forall v, w \in K^{2 \times 1}$, denn $\varphi(t) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, Rang = 2

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \underbrace{\begin{bmatrix} 2 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 2 \end{bmatrix}}_{=2 \begin{bmatrix} 1 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 2 \end{bmatrix}}_{=2 \begin{bmatrix} 1 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 2 \end{bmatrix}} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$

$$\tau : \underbrace{(v,w)}_{V \times W} \mapsto \underbrace{v \otimes w}_{V \otimes W} \text{ ist im Allgemeinen weder injektiv noch surjektiv.}$$

Beispiel 3.3.2

$$\begin{split} K &= \mathbb{Z} \\ W_1 &= \mathbb{Z}_4 = \mathbb{Z}_{/4\mathbb{Z}} = < a >_{\mathbb{Z}}, a = 1 + 4\mathbb{Z} \\ W_2 &= \mathbb{Z}_6 = \mathbb{Z}_{/6\mathbb{Z}} = < b >_{\mathbb{Z}}, b = 1 + 6\mathbb{Z} \\ \text{In } W_1 &= \mathbb{Z}_4 \text{ ist } 4 \cdot a = 0. \text{ In } W_2 = \mathbb{Z}_6 \text{ ist } 6 \cdot b = 0. \end{split}$$

$$\begin{aligned} W_1 \otimes W_2 &= \mathbb{Z}_4 \otimes \mathbb{Z}_6 \\ &= \langle a \otimes b \rangle_{\mathbb{Z}} \\ &= \{ na \otimes b | n \in \mathbb{Z} \} \text{ nach Bem.3.3.1 (c)}. \end{aligned}$$

$$2 \cdot (a \otimes b) = (6-4)(a \otimes b) = 6(a \otimes b) - 4(a \otimes b)$$

$$= a \otimes (6b) - (4a) \otimes b$$

$$= a \otimes 0 - 0 \otimes b$$

$$= 0$$
Bem.3.3.1
$$= 0$$

Regeln:

a)
$$(sv) \otimes w = v \otimes sw = s(v \otimes w), s \in K, v \in V, w \in W$$

 $(v + v') \otimes w = v \otimes w + v' \otimes w$
 $v \otimes (w + w') = v \otimes w + v \otimes w'$
 τ bilinear

b)
$$0 \otimes w = v \otimes 0 = \underline{0} \in V \otimes W$$

Ist K Körper, so gilt $v \otimes w = \underline{0} \Rightarrow v = 0$ oder $w = 0$
(denn $v \neq 0, w \neq 0 \Rightarrow v, w$ als "Basisvektoren" wählbar, $v \otimes w$ ist Basisvektor von $V \otimes W$ (Bem.3.3.1 (e))

c)
$$V = \langle \mathcal{B} \rangle_K, W = \langle \mathcal{B}' \rangle_K$$

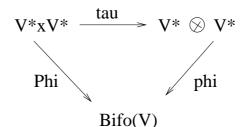
 $\Rightarrow V \otimes W = \langle v \otimes w | v \in \mathcal{B}, w \in \mathcal{B}' \rangle_K$

Beispiel 3.3.3

$$\begin{split} K &= \mathbb{Z}, \mathbb{Q} \otimes \mathbb{Z}_n = \{0\} \\ \mathbb{Z} &= \mathbb{Z}_{/n\mathbb{Z}} = < a >, a = 1 + n\mathbb{Z}, \text{ denn } \mathbb{Q} \otimes \mathbb{Z}_n = < \frac{z}{m} \otimes a | z \in \mathbb{Z}, m \in \mathbb{N} > \\ \frac{z}{m} \otimes a &= \frac{nz}{nm} \otimes a = \frac{z}{nm} \otimes na = \frac{z}{nm} \otimes 0 = 0 \end{split}$$

Beispiel 3.3.4

K Körper, V K-Vektorraum, $Bifo(V) = \{\Phi : V \times V \to K | \Phi \text{ bilinear } \},$ $dim(V) = n < \infty, V^* = Hom_K(V, K)$ Dualraum



Zu jeder bilinearen Abbildung $\Phi: \begin{array}{ccc} V^* \times V^* & \to & Bifo(V) \\ (\lambda,\mu) & \mapsto & \lambda * \mu \end{array}$ $\exists^1 \varphi: V^* \otimes V^* \to Bifo(V) \text{ mit } \varphi(\lambda \otimes \mu) = \Phi(\lambda, \mu), \varphi \text{ linear, wobei } \lambda * \mu(v, w) = \lambda(v) \underbrace{\qquad \qquad }_{\in K} \mu(w) \in K, v, w \in V, \text{ bilinear.}$ $\exists^1 \varphi: V^* \otimes V^* \to Bifo(V), \varphi \text{ K-linear, mit } \lambda \otimes \mu = \lambda * \mu$ $dim(V^* \otimes V^*) = n^2 = dim(Bifo(V))$

Es genügt zu zeigen: φ surjektiv

Basis
$$\mathcal{B} = (v_1, \dots, v_n)$$
 von V

$$\mathcal{B}^* = (v^1, \dots, v^n)$$
 zu \mathcal{B} duale Basis von V^*

$$v^i * v^j(v_k, v_l) = \underbrace{v^i(v_k)}_{\delta_{ik}} \underbrace{v^j(v_l)}_{\delta_{jl}}$$

$$M_{\mathcal{B}}(v^i * v^j) = E_{ij} \in K^{n \times n}$$

Also:

 $Bild(\Phi) \supseteq Erzeugendensystem von Bifo(V)$ $Bild(\Phi) \subseteq Bild(\varphi) \supseteq Erzeugendensystem von Bifo(V)$ also φ surjektiv

Definition 3.3.1 (Tensoren)

Es sei V K-Vektorraum. Die Elemente von $T=\underbrace{V^*\otimes\ldots\otimes V^*}_r\otimes\underbrace{V\otimes\ldots\otimes V}_s$

heißen r-fach kovariante, s-fach kontravariante **Tensoren** (der Stufe r

Ist $\mathcal{B} = (v_1, \dots, v_n)$ Basis von $V, \mathcal{B}^* = (v^1, \dots, v^n)$ zu \mathcal{B} duale Basis von V^* .

 $\text{Jedes } t \in T \text{ hat eindeutige Darstellung } t = \sum_{i_1, \dots, i_r = 1}^n \sum_{j_1, \dots, j_s = 1}^n \underbrace{x_{i_1 \dots i_r}^{j_1 \dots j_s}}_{\in K} v^{i_1} \otimes \dots \otimes v^{i_r} \otimes v_{j_1} \otimes \dots \otimes v_{j_s}$

Definiert man g_t : $\mathfrak{B} = \{ \text{Basen von } V \} \rightarrow$ $\mathcal{B} \longmapsto g_t(\mathcal{B})(i_1,\ldots,i_r,j_1,\ldots,j_s) = x_{i_1\ldots i_r}^{j_1\ldots j_s},$ so ist g_t eine r-fach ko-, s-fach kontravariante Tensorgröße gemäß §1.

Satz 3.3.1 (Assoziativität des Tensorproduktes)

Es gilt für K-Moduln W_1, W_2, W_3 (K kommutativer Ring):

Es gibt Isomorphismen mit:

$$(W_1 \otimes W_2) \otimes W_3 \cong W_1 \otimes W_2 \otimes W_3 \cong W_1 \otimes (W_2 \otimes W_3)$$

$$(w_1 \otimes w_2) \otimes w_3 \longleftrightarrow w_1 \otimes w_2 \otimes w_3 \longleftrightarrow w_1 \otimes (w_2 \otimes w_3)$$

Beweis:

. . .

Gegenbeispiel:

Es gibt im Allgemeinen ($char(K) \neq 2$) keine (K-lineare Abbildung) $\varphi: V \otimes V \to V$, V K-Vektorraum, mit $\varphi(v \otimes w) = v - w$, denn

$$\begin{array}{l} v\otimes v\to v-v=0\\ 2v\otimes \frac{1}{2}v\to 2v-\frac{1}{2}v=\frac{3}{2}v\\ \text{aber }v\otimes v=2v\otimes \frac{1}{2}v\text{ und}\\ 0\neq \frac{3}{2}v\text{ i.A.} \end{array}$$

Satz 3.3.2

Sind V, V', W K-Moduln (K kommutativer Ring), so gibt es Isomorphismen

a)
$$\varphi: V \otimes W \cong W \otimes V$$
 mit $\varphi(v \otimes w) = w \otimes v, v \in V, w \in W$

b)
$$\varphi: K \otimes W \cong W \text{ mit } \varphi(s \otimes w) = s \cdot w, s \in K, w \in W$$

c)
$$\varphi: (V \oplus V') \otimes W \cong V \otimes W \oplus V' \otimes W$$

 $\varphi((v,v') \otimes w) = (v \otimes w, v' \otimes w), v \in V, v' \in V', w \in W$

Beweis:

a) Übung

b)

Übung

Preisaufgabe

3.4 Tensorprodukte von linearen Abbildungen

Satz 3.4.1

Es seien V, W, V', W' K-Moduln, K kommutativer Ring, und $\varphi \in Hom_K(V, V')$ und $\psi \in Hom_K(W, W')$.

a) Es gibt genau eine K-lineare Abbildung

$$\varphi \otimes \psi: \begin{array}{ccc} V \otimes W & \to & V' \otimes W' \\ v \otimes w & \mapsto & \varphi(v) \otimes \psi(w) \end{array}$$

b) Ist
$$\mathcal{B} = (v_1, \dots, v_n)$$
 K -Basis von $V, \mathcal{B}' = (v'_1, \dots, v'_m)$ K -Basis von $V', \mathcal{C} = (w_1, \dots, w_p)$ K -Basis von $W, \mathcal{C}' = (w'_1, \dots, w'_q)$ K -Basis von W' und
$$M_{\mathcal{B}'}^{\mathcal{B}}(\varphi) = A = [a_{ij}] \in K^{m \times n}, \text{ d.h. } \varphi(v_j) = \sum_{i=1}^m a_{ij}v'_i \text{ und}$$

$$M_{\mathcal{C}'}^{\mathcal{C}}(\psi) = D = [d_{ij}] \in K^{q \times p}, \text{ d.h. } \psi(w_k) = \sum_{j=1}^m d_{jk}w'_j$$

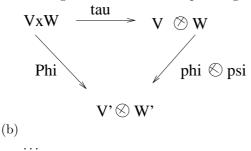
$$\mathcal{B} \otimes \mathcal{C} := (v_1 \otimes w_1, \dots, v_1 \otimes w_p, \dots, v_n \otimes w_1, \dots, v_n \otimes w_p) \text{ (lexikographisch geordnet)}$$

$$\mathcal{B}' \otimes \mathcal{C}' := (v'_1 \otimes w'_1, \dots, v'_1 \otimes w'_q, \dots, v'_m \otimes w'_1, \dots, w'_m \otimes w'_q), \text{ dann ist}$$

$$M_{\mathcal{B}' \otimes \mathcal{C}'}^{\mathcal{B} \otimes \mathcal{C}}(\varphi \otimes \psi) = \underbrace{A \otimes D}_{\text{Kroneckerprodukt}} = \begin{bmatrix} a_{11}D & \dots & a_{1n}D \\ \vdots & & \vdots \\ a_{m1}D & \dots & a_{mn}D \end{bmatrix}$$

Beweis:

(a) Definiere $\Phi: (v, w) \mapsto \varphi(v) \otimes \psi(w)$, Φ bilinear. Die Existenz von $\varphi \otimes \psi$ mit Eigenschaften wie behauptet folgt aus Satz 1 (§2).



Beispiel:

$$\left[\begin{array}{cccc} 1 & 2 \\ 3 & 4 \end{array}\right] \otimes \left[\begin{array}{ccccc} 1 & 0 & 1 \\ 2 & 0 & 3 \end{array}\right] = \left[\begin{array}{ccccccc} 1 & 0 & 1 & 2 & 0 & 2 \\ 2 & 0 & 3 & 4 & 0 & 6 \\ 3 & 0 & 3 & 4 & 0 & 4 \\ 6 & 0 & 9 & 8 & 0 & 12 \end{array}\right]$$

Bemerkung 3.4.1

Bei anderer Anordnung der Basen

$$\mathcal{B}' \otimes \tilde{\mathcal{C}} := (v_1 \otimes w_1, \dots, v_m \otimes w_1, \dots, v_1 \otimes w_p, \dots, v_m \otimes w_p)$$

$$\mathcal{B}' \otimes \tilde{\mathcal{C}}' := (v_1' \otimes w_1', \dots)$$

$$M_{\mathcal{B}' \otimes \tilde{\mathcal{C}}'}^{\mathcal{B} \otimes \tilde{\mathcal{C}}}(\varphi \otimes \psi) = D \otimes A.$$

Satz 3.4.2

Seien $\varphi:V\to V', \varphi':V'\to V''$ und $\psi:W\to W', \psi':W'\to W''$ K-lineare Abbildungen. Dann gilt:

$$(\varphi' \otimes \psi') \circ (\varphi \otimes \psi) = (\varphi' \circ \varphi) \otimes (\psi' \circ \psi)$$

Beweis:

r.S.
$$(v \otimes w) = 1.S.$$
 $(v \otimes w) \forall v \in V, w \in W$

(Bem.: Abbildungen sind gleich, wenn sie auf einem Erzeugendensystem übereinstimmen.) \Rightarrow r.S. = l.S.

Seien nun V, V', V'', W, W', W'' freie Moduln mit endlichen Basen $\mathcal{B}, \mathcal{B}', \mathcal{B}'', \mathcal{C}, \mathcal{C}', \mathcal{C}''$.

$$\begin{array}{l} M_{\mathcal{B}'}^{\mathcal{B}}(\varphi) = A, M_{\mathcal{B}''}^{\mathcal{B}'}(\varphi') = A', \\ M_{\mathcal{C}'}^{\mathcal{C}}(\psi) = D, M_{\mathcal{C}''}^{\mathcal{C}'}(\psi) = D' \\ M_{\mathcal{B}' \otimes \mathcal{C}'}^{\mathcal{B} \otimes \mathcal{C}}(\varphi \otimes \psi) = A \otimes D \end{array}$$

$$M_{\mathcal{C}'}^{\mathcal{C}}(\psi) = D, M_{\mathcal{C}''}^{\mathcal{C}'}(\psi) = D'$$

$$M_{\mathcal{B}'\otimes\mathcal{C}'}^{\mathcal{B}\otimes\mathcal{C}}(\varphi\otimes\psi)=A\otimes D$$

Folgerung 3.4.1

Für $A \in K^{m \times n}$, $A' \in K^{l \times m}$, $B \in K^{p \times q}$, $B' \in K^{k \times p}$ gilt

$$(A' \otimes B') \cdot (A \otimes B) = (A' \cdot A) \otimes (B' \cdot B)$$
, dabei ist · das

Matrixprodukt und \otimes das Kroneckerprodukt, also

$$A \otimes B = \begin{bmatrix} a_{11}B & \dots & a_{1n}B \\ \vdots & & \vdots \\ a_{m1}B & \dots & a_{mn}B \end{bmatrix} \in K^{mp \times nq}$$

Satz 3.4.3

Es seien $A \in K^{m \times m}$, $B \in K^{n \times n}$ (K kommutativer Ring). Dann gilt:

- a) Sind A und B invertierbar, so auch $A \otimes B$ und $(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}$.
- b) $spur(A \otimes B) = spur(A) \cdot spur(B)$
- c) $det(A \otimes B) = (det(A))^n (det(B))^m$
- d) Falls K Körper: $A \otimes B$ und $B \otimes A$ sind ähnlich.
- e) Falls K Körper: Zerfallen die charakteristischen Polynome $\chi_A, \chi_B \in K[X]$ in Linearfaktoren, so ist

$$\chi_{A \otimes B} = \chi_A \otimes \chi_B := \prod_{i=1}^m \prod_{j=1}^n (X - s_i t_j),$$
wobei
$$\chi_A = \prod_{i=1}^m (X - s_i), \chi_B = \prod_{j=1}^n (X - t_j)$$

 $(A \otimes B \in K^{mn \times mn})$

Beachte: $\chi_A \otimes \chi_B \neq \chi_A \cdot \chi_B$

Bemerkung 3.4.2

In der Algebra lernt man, dass es zu jedem Körper K einen algebraisch abgeschlossenen Körper \overline{K} gibt mit $K \subseteq \frac{\overset{\circ}{K}}{K}$. $A \in K^{m \times m} \subseteq \overline{K}^{m \times m}$, $B \in K^{n \times n} \subseteq \overline{K}^{n \times n}$

$$A \in K^{m \times m} \subset \overline{K}^{m \times m}$$
, $B \in K^{n \times n} \subset \overline{K}^{n \times n}$

 \Rightarrow In (e) kann man die Voraussetzung über χ_A, χ_B weglassen.

Beispiel 3.4.1

$$A = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} = B, det(A) = 1, A^{-1} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$$

$$\chi_A = \chi_B = X^2 - 3X + 1$$

$$A \otimes B = \begin{bmatrix} 4 & -2 & -2 & 1 \\ -2 & 2 & 1 & -1 \\ -2 & 1 & 2 & -1 \\ 1 & -1 & -1 & 1 \end{bmatrix}$$

$$(A \otimes B)^{-1} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 1 & 2 \\ 1 & 1 & 2 & 2 \\ 1 & 1 & 2 & 2 \end{bmatrix}$$

$$\chi_A^2 = X^4 - 6X^3 + \dots \Rightarrow \chi_{A \otimes B} \neq \chi_A \cdot \chi_A$$

$$spur(A \otimes B) = 9$$

$$det(A \otimes B) = 1^2 \cdot 1^2 = 1$$

Nebenrechnung:

$$\chi_{A} = (X - \frac{1}{2}(3 + \sqrt{5}))(X - \frac{1}{2}(3 - \sqrt{5}))$$

$$\chi_{A \otimes A} = (X - s_1^2)(X - s_1 s_2)(X - s_2 s_1)(X - s_2^2)$$

$$= (X - 1)^2(X - \frac{1}{2}(7 + 3\sqrt{5}))(X - \frac{1}{2}(7 - 3\sqrt{5}))$$

$$= \dots$$

$$= X^4 - \underbrace{9}_{\text{durch die Spur}} X^3 + 14X^2 + 5X + \underbrace{1}_{\text{durch die Determinante}}$$

3.5 Das äußere Produkt

V, W seien K-Moduln, K kommutativer Ring.

Definition 3.5.1 $(Alt_r(V, W))$

$$Alt_r(V, W) = \{\Phi : \underbrace{V \times \ldots \times V}_r \to W | \Phi \text{ multilinear}, \underbrace{\Phi(v_1, \ldots, v_r) = 0 \text{ falls } |\{v_1, \ldots, v_r\}| < r}_{\Phi \text{ alternierend}} \}$$

$$\underbrace{(\text{Alternativ: } Alt_r(V, W) = \{\Phi : \underbrace{V \times \ldots \times V}_r \to W | \Phi \text{ multilinear und} \}$$

$$\Phi(w_1, \ldots, w_r) = 0, \text{ falls } \exists i \neq j \text{ mit } w_i = w_j\})$$

Beispiel 3.5.1

Determinantenform (s. LA I),
$$V = K^{n \times 1}, W = K, r = n$$

$$D(\begin{bmatrix} a_{11} \\ \vdots \\ a_{n1} \end{bmatrix}, \dots, \begin{bmatrix} a_{1n} \\ \vdots \\ a_{nn} \end{bmatrix}) = det[a_{ij}]_{1 \le i, j \le n}$$

Bemerkung 3.5.1

Ist $\Phi \in Alt_r(V, W)$, so gilt

$$\Phi(v_1,\ldots,v_i,\ldots,v_j,\ldots,v_r) = -\Phi(v_1,\ldots,v_j,\ldots,v_i,\ldots,v_r),$$

denn:

$$0 = \Phi(v_1, \dots, v_i + v_j, \dots, v_i + v_j, \dots, v_r)$$

$$= \underbrace{\Phi(v_1, \dots, v_i, \dots, v_i, \dots, v_r)}_{=0} + \Phi(v_1, \dots, v_i, \dots, v_j, \dots, v_r) + \underbrace{\Phi(v_1, \dots, v_j, \dots, v_j, \dots, v_r)}_{=0} + \Phi(v_1, \dots, v_j, \dots, v_i, \dots, v_r)$$

Satz 3.5.1

Zu $r \in \mathbb{N}$ und V K-Modul (K kommutativer Ring) existieren $\bigwedge^r V = \bigwedge^r (V)$ und $\alpha : \underbrace{V \times \ldots \times V}_{} \to \bigwedge^r V$ alternierend multilinear, d.h. $\alpha \in Alt_r(V, \bigwedge^r V)$,

mit folgender "universeller" Eigenschaft ⊛:

Zu jedem $\Phi \in Alt_r(V, W), W$ K-Modul, existiert genau ein $\varphi \in Hom_K(\bigwedge^r V, W)$ mit $\Phi = \varphi \circ \alpha$.

Beweis:

. .

Definition 3.5.2 (r-te äußere Potenz)

 $(\bigwedge^r V, \alpha)$ heißt **r-te äußere Potenz** von V. Man schreibt: $\alpha(v_1, \dots, v_r) =: v_1 \wedge \dots \wedge v_r$.

Bemerkung 3.5.2

$$Alt_r(V,W) \leftrightarrow Hom_K(\bigwedge^r V,w)$$

Satz 3.5.2 (Eindeutigkeit)

Erfüllen auch $\tilde{\bigwedge}^r V$ und $\begin{array}{ccc} V \times \ldots \times V & \to & \tilde{\bigwedge}^r (V) \\ (w_1, \ldots, w_r) & \mapsto & w_1 \tilde{\wedge} \ldots \tilde{\wedge} w_r \end{array}$ die Bedingung \circledast , so existiert genau ein Isomorphismus $\varphi : \bigwedge^r V \to \tilde{\bigwedge}^r V$ mit $\varphi(v_1 \wedge \ldots \wedge v_r) = v_1 \tilde{\wedge} \ldots \tilde{\wedge} v_r$.

Beweis:

Genau wie in §2 Satz 2.

Satz 3.5.3

Vsei K-Modul. $\bigotimes^r V = \underbrace{V \otimes \ldots \otimes V}_r$

- a) Es gibt genau einen Epimorphismus $\varphi: \bigotimes^r V \to \bigwedge^r V$ mit $w_1 \otimes \ldots \otimes w_r \mapsto w_1 \wedge \ldots \wedge w_r$.
- b) Es gibt $\psi': \bigwedge^r V \to \bigotimes^r V, \psi'$ K-linear, mit $w_1 \wedge \ldots \wedge w_r \mapsto \sum_{\sigma \in S_r} \varepsilon(\sigma) w_{\sigma(1)} \otimes \ldots \otimes w_{\sigma(r)}$, wobei $S_r = \text{symmetrische}$ Gruppe auf $\{1, \ldots, r\}, \varepsilon(\sigma) = \stackrel{+}{-} 1 = signum(\sigma) \in K$

$$Bild(\psi') = < \sum_{\sigma \in S_r} \varepsilon(\sigma) w_{\sigma(1)} \otimes \ldots \otimes w_{\sigma(r)} | w_1, \ldots, w_r \in V >_K =: \bigotimes_{alt}^r V$$

- c) Setze $\pi' = \psi' \circ \varphi \in End(\bigotimes^r V)$. Dann gilt: $\pi'^2 = \pi' \circ \pi' = r!\pi'$
- d) Ist K Körper mit char(K) $\not|r!$ (d.h. $r! \neq 0$ in K), so setze $\pi = \frac{1}{r!}\pi'$. Dann gilt $\pi^2 = \pi$. $\psi = \frac{1}{r!}\psi'$ $\bigotimes^r V = Bild(\pi) + Kern(\pi) \cong \bigotimes^r_{alt} V \oplus Kern(\pi),$ $Bild(\pi) \cap Kern(\pi) = \{0\}$ und $\psi : \bigwedge^r V \to \bigotimes^r_{alt} V$ ist ein Isomorphismus mit $\psi^{-1} = \varphi_{|\bigotimes^r_{alt}} V$.

Beweis:

- (a)
- (1)
- (D)
- (c)
- (1)
- (d)

Beispiel 3.5.2

$$\begin{array}{cccc} r=2, v, w \in V \\ \bigwedge^2 V & \stackrel{\sim}{\rightarrow} & \bigotimes_{alt}^2 V \\ v \wedge w & \mapsto & \frac{1}{2!} (v \otimes w - w \otimes v) \end{array} \ \stackrel{(\sim}{\rightarrow}: \text{Isomorphismus})$$

Satz 3.5.4

Ist $\mathcal{B} = (v_1, \dots, v_n)$ eine Basis von V (V freier K-Modul), so ist $\bigwedge^r(\mathcal{B}) := \{v_{i_1} \wedge \dots \wedge v_{i_r} | 1 \leq i_1 < \dots < i_r \leq n\}$ eine K-Basis von $\bigwedge^r V$. Ist K Körper, so ist $\dim_K \bigwedge^r V = \binom{n}{r}$.

Beweis:

. . .

Corrolar 3.5.1

Ist
$$\mathcal{B} = (v_1, \dots, v_r)$$
 Basis von $V, w_j = \sum_{i=1}^n a_j^i v_i, 1 \le j \le r, A = [a_j^i] \in K^{n \times r}$, so ist $w_1 \wedge \dots \wedge w_r = \sum_{1 \le i_1 < \dots < i_r \le n} \det(A^{i_1 \dots i_r}) v_{i_1} \wedge \dots \wedge v_{i_r}$ mit $A^{i_1 \dots i_r} = \text{Untermatrix}$ von A mit Zeilen(indizes) i_1, \dots, i_r .

Folgerung 3.5.1

Ist in Satz 3.5.4 r > n, so ist $\bigwedge^r V = \{0\}$. (Denn $\bigwedge^r (\mathcal{B}) = \emptyset$.)

Beispiel 3.5.3

a) Sei
$$dim(V) = n = r$$
, $\binom{n}{r} = 1$.

$$\bigwedge^n V = \langle v_1 \wedge \ldots \wedge v_n \rangle, \mathcal{B} = (v_1, \ldots, v_n) \text{ Basis von } V.$$

$$w_1, \ldots, w_n \in V \text{ beliebig}$$

$$w_1 \wedge \ldots \wedge w_n = a \cdot v_1 \wedge \ldots \wedge v_n \text{ mit } a \in K$$

$$w_j = \sum_{i=1}^n a_j^i v_i, a = det(A) = det([a_j^i])$$

$$w_1, \ldots, w_n \text{ l.a. } \Leftrightarrow a = 0$$

$$w_1, \ldots, w_n \text{ l.u. } \Leftrightarrow w_1 \wedge \ldots \wedge w_n = det(M_{\mathcal{B}'}^{\mathcal{B}}(id))v_1 \wedge \ldots \wedge v_n \text{ mit } \mathcal{B}' = (w_1, \ldots, w_n)$$
b) $r = 2, n = dim(V)$

$$dim(\bigwedge^r V) = \binom{n}{2} \stackrel{!}{=} n \Leftrightarrow n \in \{0, 3\}$$
Sei also $n = 3, K$ Körper.
$$\bigwedge^2 V \cong V$$
Wähle feste Basis $\mathcal{B} = (v_1, v_2, v_3).$

$$\bigwedge^2(\mathcal{B}) = (v_1 \wedge v_2, v_1 \wedge v_3, v_2 \wedge v_3)$$

$$\bigwedge^2(V) \rightarrow V$$

$$\varphi_{\mathcal{B}} : \begin{array}{c} v_1 \wedge v_2 & \mapsto v_3 \\ v_2 \wedge v_3 & \mapsto v_1 \\ v_3 \wedge v_1 & \mapsto v_2 \end{array}$$
 Isomorphismus.

$\textbf{Definition 3.5.3} \ (\"{a}u\beta eres \ Produkt \ (Vektor produkt))$

 $\mathcal{B} = (v_1, v_2, v_3)$ sei Basis des K-Vektorraums $V, \varphi_{\mathcal{B}}$ wie oben. Dann heißt für $v, w \in V$ $v \times w = \varphi_{\mathcal{B}}(v \wedge w)$ äußeres **Produkt** (oder Vektorprodukt oder Kreuzprodukt).

$$\begin{split} v &= w_1 = \sum_{i_1=1}^3 a_1^{i_1} v_{i_1}, w = w_2 = \sum_{i_2=1}^3 a_2^{i_2} v_{i_2} \\ A &= \begin{bmatrix} a_1^1 & a_2^1 \\ a_1^2 & a_2^2 \\ a_1^3 & a_2^3 \end{bmatrix} \\ w_1 \wedge w_2 &= \det \begin{bmatrix} a_1^1 & a_2^1 \\ a_1^2 & a_2^2 \end{bmatrix} v_1 \wedge v_2 + \det \begin{bmatrix} a_1^2 & a_2^2 \\ a_1^3 & a_2^3 \end{bmatrix} v_2 \wedge v_3 + \det \begin{bmatrix} a_1^1 & a_2^1 \\ a_1^3 & a_2^3 \end{bmatrix} v_1 \wedge v_3 \end{split}$$

$$\begin{split} w_1 \times w_2 &= \det \left[\begin{array}{cc} a_1^1 & a_2^1 \\ a_1^2 & a_2^2 \end{array} \right] v_3 + \det \left[\begin{array}{cc} a_1^2 & a_2^2 \\ a_1^3 & a_2^3 \end{array} \right] v_1 - \det \left[\begin{array}{cc} a_1^1 & a_2^1 \\ a_1^3 & a_2^3 \end{array} \right] v_2 \\ &= \text{"formale Determinante} \left[\begin{array}{cc} v_1 & a_1^1 & a_2^1 \\ v_2 & a_1^2 & a_2^2 \\ v_3 & a_1^3 & a_2^3 \end{array} \right] \text{ entwickelt nach 1. Spalte"} \end{split}$$

Beispiel 3.5.4

$$V = \mathbb{R}^{3 \times 1}, \mathcal{B} = (e_1, e_2, e_3)$$

$$w_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, w_2 = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$$

$$w_1 \times w_2 = \det \begin{bmatrix} 2 & 5 \\ 3 & 6 \end{bmatrix} e_1 - \det \begin{bmatrix} 1 & 4 \\ 3 & 6 \end{bmatrix} e_2 + \det \begin{bmatrix} 1 & 4 \\ 2 & 5 \end{bmatrix} e_3 = \begin{bmatrix} -3 \\ 6 \\ -3 \end{bmatrix}$$

Bemerkung 3.5.3

$$(w_1 + sw'_1) \times w_2 = (w_1 \times w_2) + s(w'_1 \times w_2) \quad s \in K, w_1, w'_1 \in V$$

 $w_1 \times w_2 = -w_2 \times w_1$
 $w_1, w_2 \text{ l.a.} \Rightarrow w_1 \times w_2 = \underline{0}$

Bemerkung 3.5.4

Sei (zusätzlich) $\Phi: V \times V \to K$ symmetrische Bifo und $\mathcal{B} = (v_1, v_2, v_3)$ sei ON-Basis. Dann gilt:

a)
$$\Phi(w_1 \times w_2, w_3) = \det[a_j^i], w_j = \sum_{i=1}^3 a_j^i v_i$$

b)
$$w_1 \times w_2 \in w_1^{\perp} \wedge w_2^{\perp} = \langle w_1, w_2 \rangle^{\perp}$$

c)
$$(w_1 \times w_2) \times w_3 \in \langle w_1, w_2 \rangle$$

 $(w_1 \times w_2) \times w_3 = \Phi(w_1, w_3)w_2 - \Phi(w_2, w_3)w_1$

d) \times ist nicht assoziativ.

$$(w_1 \times w_2) \times w_3 \underbrace{-w_1 \times (w_2 \times w_3)}_{(w_2 \times w_3) \times w_1} = (w_1 \times w_3) \times w_2 \text{ oder}$$

 \otimes $(w_1 \times w_2) \times w_3 + (w_2 \times w_3) \times w_1 + (w_3 \times w_1) \times w_2 = 0$ (Jacobi-Gleichung) $(V, +, \times)$ ist Beispiel einer "**Lie-Algebra**" (d.h. Assoziativgesetz wird ersetzt durch Jacobi-Identität).

Bemerkung 3.5.5

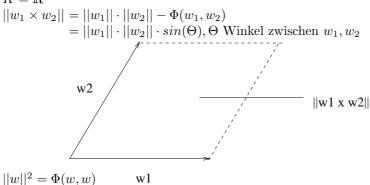
$$(K^{n\times n},+,[,]),[A,B]:=AB-BA \text{ ist Lie-Algebra.}$$
 Vgl. $\circledast,[[A,B],C]+\dots\stackrel{\ddot{\cup}}{=}0$

Bemerkung 3.5.6

$$\Phi(w_1 \times w_2, w_1 \times w_2) = \Phi(w_1, w_1)\Phi(w_2, w_2) - \Phi(w_1, w_2)^2$$

Speziell:

$$K = \mathbb{R}$$



Beweis:

In §6.

Satz 3.5.5

V sei n-dimensionaler K-Vektorraum. Dann gilt:

a) Für
$$w_1, \ldots, w_r \in W$$
 gilt: (w_1, \ldots, w_r) l.a. $\Leftrightarrow w_1 \wedge \ldots \wedge w_r = 0$

b)
$$\langle u_1, \dots, u_r \rangle = \langle w_1, \dots, w_r \rangle = U, dim(U) = r$$

 $\Leftrightarrow w_1 \wedge \dots \wedge w_r = au_1 \wedge \dots \wedge u_r \text{ mit } a \in K \setminus \{0\}$

Beweis:

(a)

..

(b)

/

Definition 3.5.4 (Plücker-Koordinaten)

Ist V K-Vektorraum mit Basis $\mathcal{B} = (v_1, \ldots, v_n)$ und $U = \langle u_1, \ldots, u_r \rangle$ Teilraum von V der Dimension r, so heißen die Koordinaten von $u_1 \wedge \ldots \wedge u_r$ bzgl. $\bigwedge^r(\mathcal{B})$ die "**Plücker-Koordinaten**" von U. Sie sind nach Satz 3.5.5 bis auf ein gemeinsames skalares Vielfaches eindeutig bestimmt.

Beispiel 3.5.5

$$V = \mathbb{R}^{4 \times 1}, \mathcal{B} = (e_1, \dots, e_4)$$

$$U = < \begin{bmatrix} 1 \\ 2 \\ 3 \\ 0 \end{bmatrix}, \begin{bmatrix} 4 \\ 5 \\ 6 \\ 1 \end{bmatrix} > = < u_1, u_2 >, dim(U) = 2$$

$$u_1 \wedge u_2 = (5 - 8)e_1 \wedge e_2 + (-6)e_1 \wedge e_3 + 1 \cdot e_1 \wedge e_4 + \dots$$

Plücker-Koordinaten $(U)=[-3,-6,-1,\ldots,\ldots]$ $w_1 = \begin{bmatrix} \vdots \end{bmatrix}, w_2 = \begin{bmatrix} \vdots \end{bmatrix}$ Frage: $\langle w_1, w_2 \rangle = U$?

Antwort: Falls die Plücker-Koordinaten von $< w_1, w_2 >$ ein Vielfaches von denen von U sind, dann Ja.

3.6 Äußeres Produkt von linearen Abbildungen

Satz 3.6.1

Sind V, W K-Moduln (K kommutativer Ring) und $\varphi: V \to W$ K-linear und $r \in \mathbb{N}$,

- a) so existiert eindeutig $\bigwedge^r \varphi : \bigwedge^r V \to \bigwedge^r W$ mit $v_1 \wedge \ldots \wedge v_r \mapsto \varphi(v_1) \wedge \ldots \wedge \varphi(v_r)$.
- b) Ist $\psi: W \to W'$ K-linear, so ist $\bigwedge^r (\psi \circ \varphi) = \bigwedge^r \psi \circ \bigwedge^r \varphi$.

Beweis:

(a)

(b)

Es sei nun $\mathcal{B} = (v_1, \dots, v_n)$ K-Basis von V und $\mathcal{C} = (w_1, \dots, w_m)$ K-Basis

 $\varphi: V \to W \text{ linear, } M_{\mathcal{C}}^{\mathcal{B}}(\varphi) = [a_{ij}] = A \in K^{m \times n}$ $\bigwedge^{r}(\mathcal{B}) = \{v_{j_1} \wedge \ldots \wedge v_{j_r} | 1 \leq j_1 \leq \ldots \leq j_r \leq n\} \text{ Basis von } \bigwedge^{r} V.$ $\bigwedge^{r}(\mathcal{C}) = \{w_{i_1} \wedge \ldots \wedge w_{i_r} | 1 \leq i_1 \leq \ldots \leq i_r \leq n\} \text{ Basis von } \bigwedge^{r} W.$

lexikographisch geordnet

$$\bigwedge^{r} \varphi(v_{j_{1}} \wedge \ldots \wedge v_{j_{r}}) = \varphi(v_{j_{1}}) \wedge \ldots \wedge \varphi(v_{j_{r}})$$

$$= \sum_{\text{Corr. zu Satz 3 } \S 5} \sum_{1 \leq i_{1} \leq \ldots \leq i_{r} \leq m} \det(A^{i_{1} \ldots i_{r}}_{j_{1} \ldots j_{r}}) w_{i_{1}} \wedge \ldots \wedge w_{i_{r}}$$

$$\text{mit } A^{i_{1} \ldots i_{r}}_{j_{1} \ldots j_{r}} = \begin{bmatrix} a^{i_{1}}_{j_{1}} & \ldots & a^{i_{1}}_{j_{r}} \\ \vdots & & \vdots \\ a^{i_{r}}_{j_{1}} & \ldots & a^{i_{r}}_{j_{r}} \end{bmatrix}$$

Also
$$M_{\bigwedge^r(\mathcal{C})}^{\bigwedge^r(\mathcal{B})}(\bigwedge^r \varphi) = \left[\det(A_{(j)}^{(i)})\right]_{(i)\in\underbrace{\binom{m}{r},(j)\in\underbrace{\binom{n}{r}}}_{r}=:\bigwedge^r A \text{ mit}$$

$$\underbrace{\binom{m}{r}}_{r} = \{(i) = (i_1 \dots i_r)|1 \le i_1 \le \dots \le i_r \le m\},$$

$$\underbrace{\binom{n}{r}}_{r} = \{(j) = (j_1 \dots j_r)|1 \le j_1 \le \dots \le j_r \le n\}$$

Beispiel 3.6.1

$$\begin{split} A &= \left[\begin{array}{cc} 1 & 2 & 3 \\ 4 & 5 & 6 \end{array} \right] \in K^{2\times3} \\ \bigwedge^2 A &= A \wedge A = \left[\begin{array}{cc} -3 & -6 & -3 \end{array} \right] \in K^{1\times3} \\ (\text{mit } \binom{m}{r} = \binom{2}{2} \text{ Zeilen und } \binom{n}{r} = \binom{3}{2} \text{ Spalten}) \end{split}$$

Satz 3.6.2

a) Ist
$$A \in K^{m \times n}, D \in K^{n \times p}$$

 $\bigwedge^r (A \cdot D) = \bigwedge^r A \cdot \bigwedge^r D$

b) (Cauchy-Binet)
Ist
$$A \in K^{m \times n}$$
, $D \in K^{n \times m}$, dann gilt $det(A \cdot D) = \sum_{(k) \in \left(\frac{n}{m}\right)} det(A_{(k)}) det(D^{(k)})$

$$((k) = (k_1, \dots, k_m))$$

Beachte: $A_{(k)}$, $D^{(k)} \in K^{m \times m}$

Beweis:

- (a) Folgt direkt aus Satz 3.6.1 (b).
- (b) Folgt aus (a) mit r = m.

Bemerkung 3.6.1

Ist in Satz 3.6.2 (b)
$$n < m$$
, so ist $\underline{\binom{n}{m}} = \emptyset$, also r.S. $\underset{\text{Konvention}}{=} 0$. $Rang(\underbrace{A \cdot B}_{\in K^{m \times n}}) \leq Min\{n, m\} = n$

Beispiel 3.6.2

$$A = \begin{bmatrix} \frac{1}{\sqrt{2}} & 7 & 3\\ \sqrt{2} & 1 & 6 \end{bmatrix}, D = \begin{bmatrix} \sqrt{3} & \frac{1}{\sqrt{3}}\\ 6 & 2\\ 1 & 0 \end{bmatrix}$$

$$det(A \cdot D) = -78, \text{ denn}$$

$$det(A \cdot D) = det \begin{bmatrix} \frac{1}{\sqrt{2}} & 7\\ \sqrt{2} & 1 \end{bmatrix} \underbrace{det \begin{bmatrix} \sqrt{3} & \frac{1}{\sqrt{3}}\\ 6 & 2 \end{bmatrix}}_{=0}$$

$$+ \underbrace{det \begin{bmatrix} \frac{1}{\sqrt{2}} & 3\\ \sqrt{2} & 6 \end{bmatrix}}_{=0} det \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}}\\ 1 & 0 \end{bmatrix}$$

$$+ det \begin{bmatrix} 7 & 3\\ 1 & 6 \end{bmatrix} + det \begin{bmatrix} 6 & 2\\ 1 & 0 \end{bmatrix}$$

$$= 39 \cdot (-2)$$

$$= -78$$

Folgerung 3.6.1 (die Wahrheit über die Cauchy-Schwarzsche-Ungleichung (endlich enthüllt :-))

Seien
$$x_1, \ldots, x_n, y_1, \ldots, y_n \in K, K$$
 kommutativer Ring.

Seien
$$x_1, ..., x_n, y_1, ..., y_n \in K, K$$
 kommutativer Ring. $(\sum_{i=1}^n x_i^2)(\sum_{i=1}^n y_i^2) - (\sum_{i=1}^n x_i y_i)^2 = \sum_{1 \le i < j \le n \atop n} (x_i y_j - x_j y_i)^2.$

Ist
$$K \subseteq \mathbb{R}$$
, dann $(\sum_{i=1}^{n} x_i^2)(\sum_{i=1}^{n} y_i^2) - (\sum_{i=1}^{n} x_i y_i)^2 \ge 0$ und die Gleichheit gilt genau

dann, wenn
$$x = \begin{bmatrix} i=1 \\ x_1 \\ \vdots \\ x_n \end{bmatrix}, y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$
 l.a. ist.

Beweis:

Folgerung 3.6.2

 $(v_1, v_2, v_3) = \mathcal{B}$ sei ON-Basis von V (V K-Vektorraum) bzgl. $\Phi: V \times V \to K$. $v \times w$ sei Vektorprodukt (bzgl. \mathcal{B}).

$$\Phi(v \times w, v \times w) = \Phi(v, v)\Phi(w, w) - \Phi(v, w)^{2}$$

$$v = \sum_{i=1}^{3} x_{i} v_{i}, w = \sum_{i=1}^{3} y_{i} v_{i}$$

$$v \times w = \det \begin{bmatrix} x_{2} & x_{3} \\ y_{2} & y_{3} \end{bmatrix} v_{1} - \det \begin{bmatrix} x_{1} & x_{3} \\ y_{1} & y_{3} \end{bmatrix} v_{2} + \det \begin{bmatrix} x_{1} & x_{2} \\ y_{1} & y_{2} \end{bmatrix} v_{3}$$

$$A = \begin{bmatrix} x_{1} & x_{2} & x_{3} \\ y_{1} & y_{2} & y_{3} \end{bmatrix}$$

$$\Phi(v \times w, v \times w) = \det_{\text{Cauchy-Binet}} \det(A \cdot A^T) = \det_{\text{direkt ausgerechnet}} \det \begin{bmatrix} \Phi(v, v) & \Phi(v, w) \\ \Phi(w, v) & \Phi(w, w) \end{bmatrix}$$

Satz 3.6.3

Ist
$$A \in K^{n \times n}$$
 (K Körper), so ist $\chi_A = det(XE_n - A) = X^n + \sum_{i=1}^n (-1)^r a_i X^{n-r}$

$$\text{mit } a_r = \sum_{1 \leq i_1 < \dots < i_r \leq n} \underbrace{\det(A^{i_1 \dots i_r}_{i_1 \dots i_r})}_{\text{Hauptminoren}} \text{ mit } A^{i_1 \dots i_r}_{i_1 \dots i_r} = \begin{bmatrix} a_{i_1 i_1} & \dots & a_{i_1 i_r} \\ \vdots & \ddots & \vdots \\ a_{i_r i_1} & \dots & a_{i_r i_r} \end{bmatrix}$$

Beispiel 3.6.3

$$A = \left[\begin{array}{rrr} 1 & 1 & 1 \\ 1 & 2 & 3 \\ -1 & -1 & -1 \end{array} \right]$$

$$\chi_{A} = X^{3} - (1+2-1)X^{2} + (\det \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} + \det \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix} + \det \begin{bmatrix} 2 & 3 \\ -1 & -1 \end{bmatrix})X$$

$$+ \det \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ -1 & -1 & -1 \end{bmatrix}$$

$$=X^3 - 2X^2 + 2X$$

3.7 Skalarerweiterungen

Es seien $K\subseteq L$ kommutative Ringe (z.B. $\mathbb{R}\subseteq\mathbb{C},\mathbb{Z}\subseteq\mathbb{Q},\ldots$). Ist W ein L-Modul, genauer $W=(W,+,ullet),ullet: L\times W \longrightarrow W \ (d,w) \mapsto d\cdot w$, so wird $W_K=(W,+,ullet_{|K\times W|})$ ein K-Modul (auf K eingeschränkter Modul).

Beispiel 3.7.1

 $W=< w_1, w_2>$ 2-dimensionaler $\mathbb C$ -Vektorraum. $W_{\mathbb R}$ ist 4-dimensionaler $\mathbb R$ -Vektorraum. (w_1,iw_1,w_2,iw_2) ist $\mathbb R$ -Basis. $\mathbb C$ ist 2-dimensionaler $\mathbb R$ -Vektorraum mit Basis (1,i).

Satz 3.7.1

Sind $L \supseteq K$ Körper, $dim_K L = m$, und ist W L-Vektorraum mit $dim_L W = n$, so ist W_K K-Vektorraum mit $dim(W_K) = m \cdot n$.

Beweis:

. . .

Satz 3.7.2

Sind $K \subseteq L$ kommutative Ringe und ist V K-Modul, so wird $L \otimes_K V$ zu L-Modul, wobei gilt $d(c \otimes v) = dc \otimes v, d, c \in L$. Ist V freier K-Modul mit Basis (v_1, \ldots, v_n) , so ist $L \otimes_K V$ freier L-Modul mit Basis $(1 \otimes v_1, \ldots, 1 \otimes v_n)$.

Beweis:

. . .

Kapitel 4

Affine und projektive Räume

4.1 Affine Räume

Definition 4.1.1 (affiner Raum, Dimension affiner Raum)

Ein affiner Raum \mathcal{A} über dem K-Vektorraum V ist eine nichtleere Menge $\emptyset \neq \mathcal{A}$ mit einer "regulären Operation von V auf \mathcal{A} ", d.h.

$$+: \begin{array}{ccc} V \times \mathcal{A} & \rightarrow & \mathcal{A} \\ (v, P) & \mapsto & v + P \end{array}$$

mit

i)
$$0+P=P \ \forall P \in \mathcal{A}$$

ii)
$$(v_1 + v_2) + P = v_1 + (v_2 + P) \ \forall v_1, v_2 \in V, P \in \mathcal{A}$$

iii) Zu $P, Q \in \mathcal{A}$ existiert genau ein $v \in V$ mit Q = v + P.

Man schreibt: $v =: \overrightarrow{PQ}$.

Die Dimension von V heißt auch **Dimension von** A.

Exakt: A = (A, V, +) affiner Raum

Bemerkung 4.1.1

Es gilt für einen affinen Raum (A, V, +):

a)
$$\overrightarrow{PP} = \underline{0} \in V \ \forall P \in \mathcal{A} \ (\text{wegen (i)})$$

b)
$$\overrightarrow{PQ} + \overrightarrow{QR} = \overrightarrow{PR}$$
 (wegen (ii))

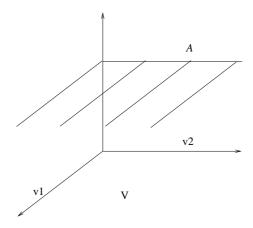
c)
$$\overrightarrow{PQ} = -\overrightarrow{QP}$$
 (wegen (b))

d)
$$\overrightarrow{PQ} = \overrightarrow{PR} \Rightarrow Q = R$$

e) Nach Wahl von
$$P_0 \in \mathcal{A}$$
 ist $V \mapsto V + P_0$ eine Bijektion. (wegen (iii))
$$V = \{\overrightarrow{P_0P} | P \in \mathcal{A}\}$$

Beispiel 4.1.1

- a) Sei V K-Vektorraum. $\mathcal{A} = (V, V, +)$
- b) $V \leq W, w_0 \in W$ beliebig, $A = w_0 + V = \{w_0 + v = v + w_0 | v \in V\}$ V, W K-Vektorraum $(A, V, +_{|V \times A})$, wobei + die Addition in W ist.



Definition 4.1.2 (affiner Teilraum)

Ist $\mathcal{A} = (\mathcal{A}, V)$ affiner Raum, so heißt $\mathcal{A}' \subseteq \mathcal{A}$ affiner Teilraum, wenn es ein $P_0 \in \mathcal{A}'$ gibt mit $U := \{\overrightarrow{P_0P}|P \in \mathcal{A}'\}$ ist Teilraum von V.

Bemerkung 4.1.2

Ist $\mathcal{A}' \subseteq \mathcal{A}$ affiner Teilraum, so ist \mathcal{A}' affiner Raum über U (s. Def.). Man sieht: Ist $Q_0 \in \mathcal{A}'$, so ist $U = \{\overrightarrow{Q_0P}|P \in \mathcal{A}'\}$, denn $\overrightarrow{Q_0P} = \overrightarrow{P_0P} - \overrightarrow{P_0Q_0} \in U$. $\mathcal{A}' = \{u + P_0|u \in U\}$

Lemma 4.1.1

Sind $\mathcal{A}', \mathcal{A}''$ affine Teilräume von (\mathcal{A}, V) und $\mathcal{A}' \cap \mathcal{A}'' \neq \emptyset$, so ist $\mathcal{A}' \cap \mathcal{A}''$ affiner Teilraum, denn

$$P_{0} \in \mathcal{A}' \cap \mathcal{A}'', \mathcal{A}' = \{u' + P_{0}|u' \in \underline{U'}\}, U' = \{\overline{P_{0}P'}|P' \in \mathcal{A}'\}$$

$$\mathcal{A}'' = \{u'' + P_{0}|u'' \in \underline{U''}\}, U'' = \{\overline{P_{0}P''}|P'' \in \mathcal{A}''\}$$

$$\mathcal{A}' \cap \mathcal{A}'' = \{u + P_{0}|u \in \underline{\underline{U'} \cap \underline{U''}}\}$$

$$\leq V$$

Definition 4.1.3 ()

 $P_0, P_1, \ldots, P_m \in \mathcal{A} \Rightarrow \mathcal{A}' = \{v + P_0 | v \in \langle \overrightarrow{P_0P_1}, \ldots, \overrightarrow{P_0P_m} \rangle \}$ ist affiner Teilraum und $\mathcal{A}' = \bigcap \{\mathcal{A}'' | \mathcal{A}''$ affiner Teilraum und $P_i \in \mathcal{A}''$ für $i = 0, \ldots, m\}$ $\mathcal{A}' = \langle P_0, \ldots, P_m \rangle_{aff}$

4.2 Affine Abbildungen

Definition 4.2.1 (affine Abbildung)

Sind (A, V) und (A', V') affine Räume, V, V' K-Vektorräume, so heißt $\alpha : A \to A'$ affine **Abbildung**, wenn

i) Für $P, Q \in \mathcal{A}, P_1, Q_1 \in \mathcal{A}$ mit $\overrightarrow{PQ} = \overrightarrow{P_1Q_1}$ gilt:

$$\overrightarrow{\alpha(P)\alpha(Q)} = \overrightarrow{\alpha(P_1)\alpha(Q_1)}$$

und

ii) die (gemäß (i) wohldefinierte) Abbildung φ_{α} : $\overrightarrow{PQ} \xrightarrow{} V' \xrightarrow{\alpha(P)\alpha(Q)}$ linear ist.

Bemerkung 4.2.1

- i) besagt "Paralellogramme werden mit affinen Abbildungen auf Paralellogramme abgebildet."
- ii) kann ersetzt werden durch

kann ersetzt werden durch
$$(ii)' \ \varphi_{\alpha}(s\overrightarrow{PQ}) = s\varphi_{\alpha}(\overrightarrow{PQ}) \ \forall s \in K, \text{ denn}$$

$$v = \overrightarrow{PQ}, w = \overrightarrow{QR}, v + w = \overrightarrow{PR}$$

$$\varphi_{\alpha}(v) = \alpha(P)\alpha(Q)$$

$$\varphi_{\alpha}(w) = \alpha(Q)\alpha(R)$$

$$\Rightarrow \varphi_{\alpha}(v) + \varphi_{\alpha}(w) = \alpha(P)\alpha(R) = \varphi_{\alpha}(\overrightarrow{PR})$$

(ii)' bedeutet: Affine Abbildungen lassen Teilverhältnisse fest, sofern sie definiert sind.

Definition 4.2.2 (Teilverhältnis, Mittelpunkt)

 $P,Q,R\in\mathcal{A},(P\neq Q),\mathcal{A}$ affiner Raum, $\overrightarrow{PR}=s\overrightarrow{PQ},s\in K$ so heißt s=TV(P,Q,R) **Teilverhältnis** von R bzgl. P,Q. Ist $char(K)\neq 2$ und $s=\frac{1}{2},$ so heißt R "Mittelpunkt" von P,Q.

Bemerkung 4.2.2

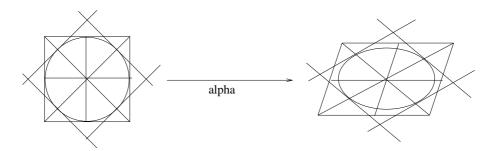
Affine Abbildungen bilden affine Teilräume auf affine Teilräume ab.

Beweis:

leichte Übung

Beispiel 4.2.1

 $\mathcal{A} = \mathbb{R}^2$



Satz 4.2.1

Sind (\mathcal{A}, V) , (\mathcal{A}', V') affine Räume über K, so existiert zu $P_0 \in \mathcal{A}$, $Q_0 \in \mathcal{A}'$ und $\varphi \in Hom_K(V, V')$ genau eine affine Abbildung $\alpha : \mathcal{A} \to \mathcal{A}'$ mit $\alpha(P_0) = Q_0$ und $\varphi_{\alpha} = \varphi$.

Beweis:

(Eindeutigkeit): (Existenz):

Satz 4.2.2

Ist (A, V) affiner Raum über K, $char(K) \neq 2, 3$, und (P_1, P_2, P_3) Dreieck in A, d.h. $P_1, P_2, P_3 \in A$, $dim < P_1, P_2, P_3 >_{aff} = 2$, so schneiden sich die "Seitenhalbierenden" $< P_i, M_i >_{aff}$ für i = 1, 2, 3 in einem Punkt M und $TV(P_i, M_i, M) = \frac{2}{3}$, wobei

- $M_1 = \text{Mittelpunkt } P_2, P_3$
- $M_2 = \text{Mittelpunkt } P_3, P_1$
- $M_3 = \text{Mittelpunkt } P_1, P_2$

Beweis:

. . .

Definition 4.2.3 (affines Koordinatensystem, affiner bzw. inhomogener Koordinatenvektor)

Ist (A, V) affiner Raum über K, so heißt $S = (P_0, P_1, \dots, P_n)$ ein **affines Koordinatensystem** von A, wenn $P_i \in A$ für $i = 0, \dots, n$ und $\mathcal{B} = (\overrightarrow{P_0P_1}, \dots, \overrightarrow{P_0P_n})$ eine K-Basis von V ist.

Dann $P \in \mathcal{A}$ (beliebig), $\overrightarrow{P_0P} = \sum_{j=1}^n x_j \overrightarrow{P_0P_j}$. Dann heißt

$$\kappa_S(P) = x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \in K^{n \times 1} \text{ bzw. } \tilde{\kappa}_S(P) = \tilde{x} = \begin{bmatrix} 1 \\ x_1 \\ \vdots \\ x_n \end{bmatrix} \in K^{(n+1) \times 1} \text{ affiner}$$

bzw. inhomogener Koordinatenvektor von P bzgl. \vec{S} .

Lemma 4.2.1

Seien $\alpha: (\mathcal{A}, V) \to (\mathcal{A}', V')$ affine Abbildung, $S = (P_0, \dots, P_n)$ bzw. $S' = (Q_0, \dots, Q_m)$ affine Koordinatensysteme von \mathcal{A} bzw. \mathcal{A}' . $\mathcal{B} = (\overrightarrow{P_0P_1}, \dots, \overrightarrow{P_0P_n})$ Basis von V, $\mathcal{B}' = (\overrightarrow{Q_0Q_1}, \dots, \overrightarrow{Q_0Q_m})$. Sei $A = [a_{ij}] = M_{\mathcal{B}'}^{\mathcal{B}}(\varphi_{\alpha}) \in K^{m \times n}$ und $P \in \mathcal{A}$.

$$\mathcal{B} = (P_0 P_1, \dots, P_0 P_n) \text{ Basis von } V, \, \mathcal{B}' = (Q_0 Q_1, \dots, Q_0 Q_m).$$
Sei $A = [a_{ij}] = M_{\mathcal{B}'}^{\mathcal{B}}(\varphi_{\alpha}) \in K^{m \times n} \text{ und } P \in \mathcal{A}.$

$$x = \kappa_S(P) = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, \, \tilde{x} = \tilde{\kappa}_S(P) = \begin{bmatrix} 1 \\ x_1 \\ \vdots \\ x_n \end{bmatrix}$$
Dann ist $\kappa_{S'}(\alpha(P)) = Ax + a \text{ mit } a = \begin{bmatrix} a_1 \\ \vdots \\ a_m \end{bmatrix} = \kappa_{S'}(\alpha(P_0)),$

$$\tilde{\kappa}_{S'}(\alpha(P)) = \tilde{A}\tilde{x} \text{ mit } \tilde{A} = M_{S'}^{S}(\alpha) = \begin{bmatrix} 1 & 0 & \dots & 0 \\ a_1 & \vdots & A \\ a_m & \end{bmatrix} = \begin{bmatrix} 1 & 0 & \dots & 0 \\ a_1 & \vdots & A \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \\ a & A \end{bmatrix} \in K^{(m+1)\times(n+1)}$$

Beispiel 4.2.2

Eine affine Abbildung $\alpha: K^{n\times 1} \to K^{m\times 1}$ ist von der Form $x\mapsto Ax+a$ mit $A\in K^{m\times n}$ und $a\in K^{m\times 1}$.

Satz 4.2.3

Sind $\alpha: \mathcal{A} \to \mathcal{A}'$ und $\beta: \mathcal{A}' \to \mathcal{A}''$ affine Abbildungen, so ist $\beta \circ \alpha: \mathcal{A} \to \mathcal{A}''$ affin

Sind S, S', S'' affine (endliche) Koordinatensysteme von A, A', A'', so gilt:

$$M_{S''}^S(\beta \circ \alpha) = M_{S''}^{S'}(\beta) \cdot M_{S'}^S(\alpha)$$

Beweis:

Klar, per Definition.

Beispiel:

$$M_{S''}^{S'}(\beta) = \tilde{B} = \begin{bmatrix} 1 & 0 \\ b & B \end{bmatrix}, M_{S'}^{S}(\alpha) = \tilde{A} = \begin{bmatrix} 1 & 0 \\ a & A \end{bmatrix}$$
$$\tilde{B} \cdot \tilde{A} = \begin{bmatrix} 1 & 0 \\ b + Ba & BA \end{bmatrix}$$

Definition 4.2.4 (Affinität)

Eine Affinität ist eine bijektive affine Abbildung.

Beispiel 4.2.3

S affines (endliches) Koordinatensystem von $\mathcal{A}.$

$$\kappa_S: \begin{array}{ccc} P & \mapsto & \kappa_S(P) \\ \mathcal{A} & \to & K^{n\times 1} \end{array} \text{ ist Affinität.}$$

Satz 4.2.4

Es sei (A, V) affiner Raum.

- a) $\alpha: \mathcal{A} \to \mathcal{A}'$ ist Affinität $\Leftrightarrow \alpha$ affin und φ_{α} ist Isomorphismus.
- b) $Aff(A) = \{\alpha : A \to A | \alpha \text{ Affinitat} \}$ ist Gruppe bzgl. \circ .

c)
$$T(\mathcal{A}) = \{\alpha \in Aff(\mathcal{A}) | \varphi_{\alpha} = id_{V}\} \leq Aff(\mathcal{A})$$

= $\{\tau_{v} : P \mapsto v + P | v \in V\}$
 $\cong (V, +)$

"Translationsuntergruppe"

d) Zu jedem $P_0 \in \mathcal{A}$ existiert

$$Aff_{P_0}(\mathcal{A}) = \{ \alpha \in Aff(\mathcal{A}) | \alpha(P_0) = P_0 \} \le Aff(\mathcal{A})$$

\(\text{\text{\text{\$\ned{\text{\$\text{\$\exiting{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitin{\text{\$\exititt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\ext{\$\text{\$\tint\$\$\$\\$\$}}\$}}\$}}}}}}}}}}}}}}}}}}}}}}}} \end{\text{\$\tin}\$}}}}}\$}}}}}}}}}}}}}}}}}}}}}}}}}}} \end{\text{\$\text{\$\text{\$\text{\$\text{

$$Aff_{P_0}(\mathcal{A}) \cap T(\mathcal{A}) = \{id\}$$

 $T(\mathcal{A}) \cdot Aff_{P_0}(\mathcal{A}) = Aff(\mathcal{A})$, d.h. jedes $\alpha \in Aff(\mathcal{A})$ kann man schreiben als $\alpha = \tau \circ \alpha_0$ mit $\alpha_0 \in Aff_{P_0}(\mathcal{A})$ und $\tau \in T(\mathcal{A})$.

e) Ist
$$S = (P_0, \dots, P_n)$$
 affines Koordinatensystem, so ist $\alpha \mapsto M_S^S(\alpha)$

$$M: Aff(\mathcal{A}) \to AGL_n(K) := \left\{ \begin{bmatrix} 1 & 0 & \dots & 0 \\ a & A \end{bmatrix} \middle| A \in GL_n(K), a \in K^{n \times 1} \right\}$$
Dabei ist $M(T(\mathcal{A})) = \left\{ \begin{bmatrix} 1 & 0 \\ a & E_n \end{bmatrix} \middle| a \in K^{n \times 1} \right\}$

$$M(Aff_{P_0}(\mathcal{A})) = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & A \end{bmatrix} \middle| A \in GL_n(K) \right\} \cong GL_n(K)$$

Beweis:

(a)

Rest: einfache Übung

4.3 Affine Klassifikation der Quadriken

Es sei (A, V) affiner Raum über K und es sei $char(K) \neq 2$, d.h. $2 = 1 + 1 \neq 0$ in K. Es sei $S = (P_0, \ldots, P_n)$ affines Koordinatensystem von A.

Definition 4.3.1 (Quadrik, affin äquivalente Quadriken)

$$\mathcal{Q} \subseteq \mathcal{A}$$
 heißt **Quadrik**, wenn $\mathcal{Q} = \{P | \kappa_S(P) = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = x \text{ und } \underbrace{\sum_{i,j=1}^n a_{ij} x_i x_j + 2 \sum_{i=1}^n a_i x_i + a_0 = 0}_{\text{quadr. Gleichung.}}$

 $a_{ij}, a_i \in K$

Beispiel: $a_{ij} = \delta_{ij}, a_0 = -1$ (1-Sphäre im n-dim.)

Zwei Quadriken $\mathcal{Q}, \mathcal{Q}'$ heißen **affin äquivalent**, wenn es eine Affinität $\alpha \in Aff(\mathcal{A})$ gibt mit $\mathcal{Q}' = \alpha(\mathcal{Q})$.

Zwei Betrachtungsmöglichkeiten (die äquivalent sind)

- a) Suche zu Q und S wie in der Definition ein Koordinatensystem S' bzgl. der die Gleichung besonders einfach wird.
- b) Suche zu $\mathcal Q$ und S eine affin äquivalente Quadrik mit einfacherer Gleichung.

Bemerkung 4.3.1

Da $char(K) \neq 2$, kann man oBdA annehmen, dass $a_{ij} = a_{ji}$. Ist $a_{ij} \neq a_{ji}$, so ersetze a_{ij} und a_{ji} durch $\frac{a_{ij} + a_{ji}}{2}$.

Bemerkung 4.3.2

 $\tilde{A}^T = \tilde{A}$, da A symmetrisch.

Nebenrechnung:

$$\tilde{x}^T \tilde{A} \tilde{x} = \tilde{x}^T \begin{bmatrix} a_0 + a^T x \\ a + Ax \end{bmatrix} = a_0 + \underbrace{a^T x + x^T a}_{2a^T x = 2 \sum_{i=1}^n a_i x_i} + x^T A x$$

Seien S, S' affine Koordinatensysteme.

$$\begin{split} \tilde{x} &= \tilde{\kappa}_{S}(P) = M_{S}^{S'}(id_{\mathcal{A}}) \cdot \tilde{\kappa}_{S'}(P) \\ M_{S}^{S}(id_{\mathcal{A}}) &= \begin{bmatrix} 1 & 0 & \dots & 0 \\ c & C \end{bmatrix} = \tilde{C}, C \in GL_{n}(K), c \in K^{n \times 1} \\ \tilde{x} &= \tilde{C}\tilde{y}, \tilde{y} = \tilde{\kappa}_{S'}(P) \\ \mathcal{Q} &= \{P \in \mathcal{A} | \tilde{\kappa}_{S}(P) = \tilde{x}, \tilde{y}^{T}(\tilde{C}^{T}\tilde{A}\tilde{C})\tilde{y} = 0\} \\ \kappa_{S'}(P) &= \tilde{y} \end{split}$$

$$\begin{split} \tilde{C}^T \tilde{A} \tilde{C} &= \begin{bmatrix} 1 & c^T \\ 0 & C^T \end{bmatrix} \begin{bmatrix} a_0 & a^T \\ a & A \end{bmatrix} \begin{bmatrix} 1 & 0 \\ c & C \end{bmatrix} \\ &= \begin{bmatrix} 1 & c^T \\ 0 & C^T \end{bmatrix} \begin{bmatrix} a_0 + a^T c & a^T C \\ a_0 + a^T c & a^T C \end{bmatrix} \\ &= \begin{bmatrix} a'_0 & a'^T \\ a' & C^T AC \end{bmatrix} \\ &\text{mit } a'_0 = a_0 + a^T c + c^T a + c^T Ac = a_0 + c^T (2a + Ac), a' = C^T a + C^T Ac = C^T (a + Ac) \end{split}$$

Nach Kapitel II §4 existiert (da $char(K) \neq 2$) $C_1 \in GL_n(K)$ mit

$$C_1^T A C_1 = diag(d_1, \dots, d_r, 0, \dots, 0), d_i \neq 0 \in K, r \leq n.$$

 $\tilde{C}_1 := \begin{bmatrix} 1 & 0 \\ 0 & C_1 \end{bmatrix}$

$$\tilde{A}_{1} = \tilde{C}_{1}^{T} \tilde{A} \tilde{C}_{1} = \begin{bmatrix} a_{0} & b_{1} & \dots & & & b_{n} \\ b_{1} & d_{1} & & & & & \\ & & \ddots & & 0 & & \\ \vdots & & & d_{r} & & & \\ & & & 0 & & \ddots & \\ b_{n} & & & & 0 \end{bmatrix}, b = \begin{bmatrix} b_{1} \\ \vdots \\ b_{n} \end{bmatrix} = C_{1}^{T} a$$

$$\tilde{C}_{2} = \begin{bmatrix} 1 & 0 & \dots & 0 \\ -\frac{b_{1}}{d_{1}} & & & \\ \vdots & & E_{n} & & \\ -\frac{b_{r}}{d_{r}} & & & \\ 0 & & & \vdots & & \\ 0 & & & & \end{bmatrix}$$

$$\tilde{A}_{2} = \tilde{C}_{2}^{T} \tilde{A}_{1} \tilde{C}_{2} = \begin{bmatrix} a'_{0} & 0 & \dots & 0 & b_{r+1} & \dots & b_{n} \\ 0 & d_{1} & & & & \\ \vdots & & \ddots & & 0 & & \\ 0 & & & d_{r} & & & \\ b_{r+1} & & & & 0 & & \\ \vdots & & 0 & & & \ddots & \\ b_{n} & & & & & 0 \end{bmatrix}$$

1. Fall:

$$b_{r+1} = \ldots = b_n = 0$$

Dann
$$Q = \{ P \in \mathcal{A} | \kappa_{S'}(P) = y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}, d_1 y_1^2 + \ldots + d_r y_r^2 + a_0' = 0 \}, a_0' = \{0, 1\}$$

2. Fall:

Nicht alle $b_{r+1}, \ldots, b_n = 0$. Dann $t \in K^{(n-r)\times 1}$.

Satz 4.3.1

Ist $char(K) \neq 2$, so ist jede Quadrik in (A, V), dim(A) = n, affin äquivalent zu einer Quadrik mit Gleichung

1)
$$d_1x_1^2 + \ldots + d_rx_r^2 = 0, r \le n$$

2)
$$d_1x_1^2 + \ldots + d_rx_r^2 = 1, r \le n$$

3)
$$d_1 x_1^2 + \ldots + d_r x_r^2 = x_{r+1}, r < n$$

Ist $K = \mathbb{R}$, so kann man $d_i \in \{1, -1\}$ wählen. Genauer: $d_1 = \ldots = d_s = 1, d_{s+1}, \ldots, d_r = -1, 1 \le s \le r$.

Corrolar 4.3.1

 $\operatorname{Im} \mathbb{R}^2$ gibt es bis auf affine Äquivalenz die folgenden nichtleeren Quadriken mit Gleichung:

- $\begin{array}{ll} x_1^2=0 & \operatorname{Gerade} \ ("x_2\text{-Achse"}) \\ 1) & x_1^2+x_2^2=0 & \operatorname{Punkt} \ ("\operatorname{Nullpunkt"}) \\ & x_1^2-x_2^2=0 & \operatorname{Paar} \ \operatorname{sich} \ \operatorname{schneidender} \ \operatorname{Geraden} \end{array}$
- $\begin{array}{ccc} x_1^2=1 & \text{Paar paralleler Geraden} \\ 2) & x_1^2+x_2^2=1 & \text{Ellipse} \\ x_1^2-x_2^2=1 & \text{Hyperbel} \end{array}$
- 3) $x_1^2 = x_2$ Parabel

4.4 Affine euklidische Räume (Euklidische Punkträume)

Hauptachsentransformation

Definition 4.4.1 (euklidischer affiner Raum)

 (\mathcal{A}, V, Φ) euklidischer affiner Raum, wenn (\mathcal{A}, V) affiner Raum über \mathbb{R} und $\Phi: V \times V \to \mathbb{R}$ positiv symmetrische $Bifo, (V, \Phi)$ euklidischer Vektorraum.

Bemerkung 4.4.1

Ist (A, V, Φ) euklidischer affiner Raum und definiert man für $P, Q \in A$

$$d(P,Q) := \parallel \overrightarrow{PQ} \parallel =_+ \sqrt{\Phi(\overrightarrow{PQ},\overrightarrow{PQ})}, d : \mathcal{A} \times \mathcal{A} \rightarrow \mathbb{R}_{\geq 0},$$

so ist (A, d) ein "**metrischer Raum**", d.h.

- i) d(P,Q) > 0 und $d(P,Q) = 0 \Leftrightarrow P = Q$
- ii) d(P,Q) = d(Q,P)
- iii) $P, Q, R \in \mathcal{A} \Rightarrow d(P, Q) + d(Q, R) \geq d(P, R)$ (Dreiecksungleichung)

Beweis:

Definition 4.4.2 (Isometrie)

Ist (A, d) metrischer Raum $(z.B. (A, V, \Phi))$ affiner euklidischer Raum), so heißt $\varphi: \mathcal{A} \to \mathcal{A}$ Isometrie, wenn

$$d(\varphi(P), \varphi(Q)) = d(P, Q) \ \forall P, Q \in \mathcal{A}$$

Satz 4.4.1

Ist (\mathcal{A}, V, Φ) euklidischer affiner Raum und $\varphi : \mathcal{A} \to \mathcal{A}$ Isometrie, so ist φ affin und injektiv und bijektiv, falls $dim(A) = dim(V) < \infty$ und die zugehörige lineare Abbildung $V \to V$ ist orthogonal.

Beweis:

Definition 4.4.3 (Bewegung, cartesisches Koordinatensystem)

- a) $\beta: \mathcal{A} \to \mathcal{A}$ heißt **Bewegung**, falls β Isometrie und bijektiv (dies ist erfüllt, falls $dim(A) < \infty$).
- b) $S = (P_0, \dots, P_n)$ cartesisches Koordinatensystem, falls $\mathcal{B} = (\overrightarrow{P_0P_1}, \dots, \overrightarrow{P_0P_n})$ eine ON-Basis von V ist.

Bemerkung 4.4.2

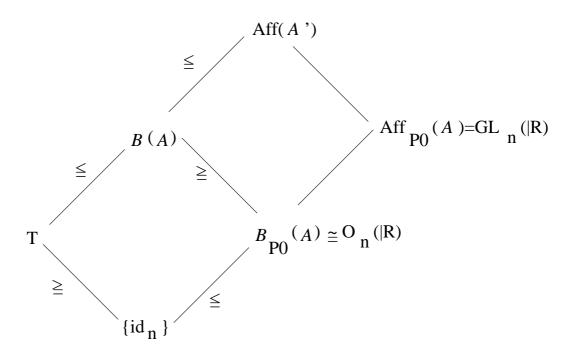
Ist $\beta: \mathcal{A} \to \mathcal{A}$ Bewegung, $S = (P_0, \dots, P_n)$ cartesisches Koordinatensystem, so ist $M_S^S(\beta) = \begin{bmatrix} 1 & 0 \\ a & A \end{bmatrix}$ mit $A \in O_n(\mathbb{R}), a \in \mathbb{R}^{n \times 1}$. So sehen auch Basiswechselmatrizen zwischen cartesischen Koordinatensyste-

men aus.

Bemerkung 4.4.3

$$\mathcal{B}(\mathcal{A}) = \{\beta : \mathcal{A} \to \mathcal{A}\} | \beta \text{ Bewegung} \} \text{ ist Untergruppe von } Aff(\mathcal{A}).$$

 $\mathcal{B}_{P_0}(\mathcal{A}) = \{\beta \in \mathcal{B}(\mathcal{A}) | \beta(P_0) = P_0\} \leq Aff_{P_0}(\mathcal{A})$



Satz 4.4.2

Ist $Q \subseteq A$ nicht leere Quadrik im euklidischen affinen Raum, (A, V, Φ) , so existiert cartesisches Koordinatensystem S von $\mathcal A$ mit

$$Q = \{ P \in \mathcal{A} | \kappa_S(P) = x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, \frac{1}{d_1^2} x_1^2 + \dots + \frac{1}{d_s^2} x_s^2 - \dots - \frac{1}{d_r^2} x_r^2 = y \text{ mit } y \in \{0, 1, x_{r+1}\} \}, \text{ dabei } d_i \in \mathbb{R}, 0 \le s \le r \le n$$

4.5 Homogene Koordinaten, Satz von Desargues

Sei $S = (P_0, \ldots, P_n)$ affines Koordinatensystem von A.

$$\tilde{\kappa}_S(P) = \begin{bmatrix} 1 \\ x_1 \\ \vdots \\ x_n \end{bmatrix}, \overrightarrow{P_0P} = \sum_{i=1}^n x_i \overrightarrow{P_0P_i}$$

Definition 4.5.1 (homogener Koordinatenvektor)

Ist $0 \neq x \in K^{(n+1)\times 1}$ mit $\langle x \rangle = \langle \tilde{\kappa}_S(P) \rangle$, so heißt x homogener Koordinatenvektor von P. Er ist durch S und P bis auf ein skalares Vielfaches eindeutig bestimmt.

Lemma 4.5.1

Seien $x, y, z \in K^{(n+1)\times 1}$ homogene Koordinatenvektoren von $P \neq Q, R$. Dann gilt $R \in \langle P, Q \rangle_{aff} \Leftrightarrow z \in \langle x, y \rangle$.

Ist $R \in \langle P,Q \rangle_{aff} \setminus \{P,Q\}$, so kann man homogene Koordinatenvektoren x',y'so wählen, dass z = x' + y'.

Beweis:

Lemma 4.5.2

Ist \mathcal{A} ein 2-dimensionaler affiner Raum über K,

 $g = \langle P, Q \rangle_{aff} \neq g' = \langle P', Q' \rangle_{aff}$ affine Geraden $\Rightarrow P \neq Q$.

Dann ist $g \cap g' = \{P_0\}$ oder $g \cap g' = \emptyset$.

Seien x, y, x', y' homogene Koordinatenvektoren von P, Q, P', Q'.

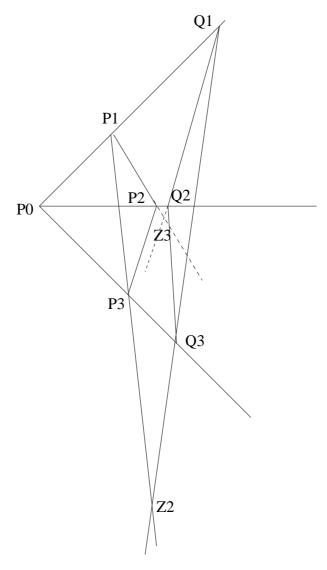
 $\begin{aligned} &< x,y> \cap < x',y'> = < z> \leq K^{3\times 1} \text{ mit } z\neq 0 \\ &< x,y> + < x',y'> = K^{3\times 1}, \text{ weil } g\neq g'. \end{aligned}$

Ist $z_0 \neq 0$, so ist z_0 homogener Koordinatenvektor von P_0 .

Ist $z_0 = 0$, so ist $g \cap g' = \emptyset$.

Satz 4.5.1 (Desargues)

Es sei \mathcal{A} 2-dimensionaler affiner Raum über K.



Es sei $P_0 = < P_1, Q_1 >_{aff} \cap < P_2, Q_2 >_{aff} \cap < P_3, Q_3 >_{aff}, P_i \neq Q_i.$

- a) Sei $Z_i \in P_j, P_k>_{aff} \cap Q_j, Q_k>_{aff}, \{i,j,k\}=\{1,2,3\}.$ Dann sind Z_1,Z_2,Z_3 kollinear.
- b) Ist $< P_1, P_2 >_{aff} \cap < Q_1, Q_3 >_{aff} = \emptyset$ und $< P_2, P_3 >_{aff} \cap < Q_2, Q_3 >_{aff} = \emptyset$, so ist auch $< P_1, P_3 >_{aff} \cap < Q_1, Q_3 >_{aff} = \emptyset$.

Beweis:

. . .

Corrolar 4.5.1 (Kleiner Satz von Desargues)

Sind in Satz 4.5.1 die "Trägergeraden" $< P_1, Q_1>_{aff}, < P_2, Q_2>_{aff}, < P_3, Q_3>_{aff}$ parallel, so gelten die Behauptungen ebenfalls.

Definition 4.5.2 (affine Ebene)

Eine Menge \mathcal{P} (von "Punkten") zusammen mit einer Menge \mathcal{G} (von "Geraden") von Teilmengen von \mathcal{P} heißt **affine Ebene**, wenn

- i) Zu $P \neq Q$ existiert genau ein $g \in \mathcal{G}$ mit $P, Q \in g$.
- ii) Zu $g \in \mathcal{G}$ und $P \in \mathcal{P}$ mit $P \notin g$ gibt es genau ein $g' \in \mathcal{G}$ mit $P \in g'$ und $g \cap g' = \emptyset$.
- iii) Jedes $g \in \mathcal{G}$ enthält mindestens zwei verschiedene Punkte und es gibt drei (verschiedene) Punkte, die nicht auf einer Geraden liegen.

Bemerkung 4.5.1

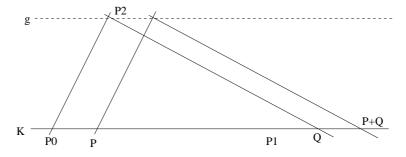
Jeder 2-dimensionale affine Raum ist (mit der Menge der 1-dimensionalen affinen Teilräume als Geraden "und der Menge der 0-dimensionalen affinen Teilräume als Punkte") eine affine Ebene. Aber es gibt auch affine Ebenen, die nicht 2-dimensional affine Räume über Körpern sind.

Bemerkung 4.5.2

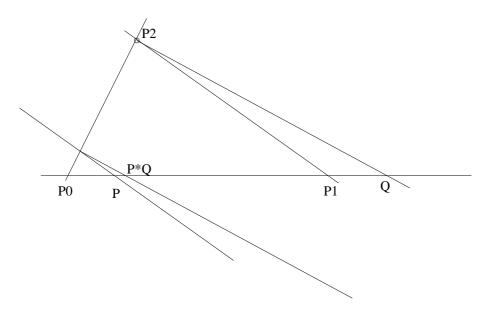
Ist $(\mathcal{P}, \mathcal{G})$ affine Ebene und P_0, P_1, P_2 gemäß (iii), die nicht auf einer Geraden liegen.

 $K = \text{Gerade (existiert nach (i)) durch } P_0, P_1$

Definiere $+: K \times K \to K, g$ sei Parallele zu K durch P_2



 $\cdot: K \times K \to K$



Bemerkung 4.5.3

Gilt der (kleine) Satz von Desargues, so gelten alle Körperaxiome in $(K, +, \cdot)$ mit Ausnahme der Kommutativität der Multiplikation. Gilt diese auch (dazu braucht man "Satz von Pappos"), so erhält man 2-dimensionalen affinen Raum über K.

4.6 Projektive Räume

Definition 4.6.1 (projektiver Raum, projektiver Unterraum)

Ist W ein (n+1)-dimensionaler K-Vektorraum, so heißt $\mathbb{P}(W) = \{ < w > | w \in W \}$ **projektiver Raum**. Ist $U \leq W$ mit $dim(U) = m+1, \{ < u > | 0 \neq u \in U \}$ heißt m-dimensionaler **projektiver Unterraum**.

m = 1: projektive Gerade m = 0: projektiver Punkt

 $\mathbb{P}_n(K) = \mathbb{P}(K^{n+1})$

Beispiel 4.6.1

$$\begin{split} K &= \mathbb{R}, \mathbb{P}_1(\mathbb{R}), W = \mathbb{R}^2 \ \mathcal{A} = w_0 + V = \{ \begin{bmatrix} 1 \\ x \end{bmatrix} | x \in \mathbb{R} \}, V = < e_1 > \\ \varepsilon : \begin{matrix} \mathcal{A} & \to & \mathbb{P}_1(\mathbb{R}) \\ w & \mapsto & < w > \end{matrix} \\ \mathbb{P}_1(\mathbb{R}) &= \varepsilon(\mathcal{A}) \cup \{ < e_1 > \} \\ \mathbb{P}_1(\mathbb{R}) &\leftrightarrow \mathbb{S}^1 = 1\text{-Sphäre} \end{split}$$

Bemerkung 4.6.1

Ist
$$dim_K(W) = n + 1, V \leq W, dim(V) = n$$

 $\mathcal{A} = w_0 + V$ (n-dimensionaler affiner Raum), $w_0 \in W \setminus V$

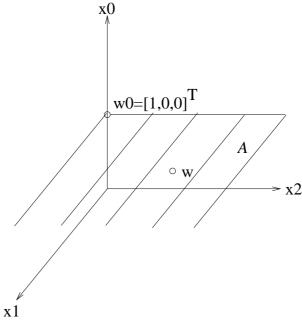
$$\varepsilon: \begin{array}{ccc} \mathcal{A} & \to & \mathbb{P}(W) \\ w & \mapsto & < w > \\ ("w \neq 0, \text{ da } 0 \not\in \mathcal{A}") \end{array}$$
 Einbettung ("injektiv, nicht surjektiv")

 $\mathbb{P}(W) = \varepsilon(\mathcal{A}) \stackrel{\cdot}{\cup} H$ mit $H = \{ < v > | 0 \neq v \in V \}$, H (n-1)-dimensionaler projektiver Unterraum von $\mathbb{P}(W)$ ("uneigentlicher Raum von $\mathbb{P}(W)$ bzgl. \mathcal{A} (oder $\varepsilon(\mathcal{A})$)")

Die projektiven Punkte $\langle v \rangle \in H$ heißen uneigentliche Punkte bzgl. \mathcal{A} .

Beispiel 4.6.2

$$n=2, \mathbb{P}_2(\mathbb{R})=\mathbb{P}(\mathbb{R}^3)$$



$$\mathcal{A} = w_0 + V, V = \langle e_1, e_2 \rangle, e_1 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, e_2 = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$$

$$\varepsilon: \begin{array}{ccc} \mathcal{A} & \rightarrow & \mathbb{P}_2(\mathbb{R}) \\ w & \mapsto & < w > \end{array}$$
 injektiv

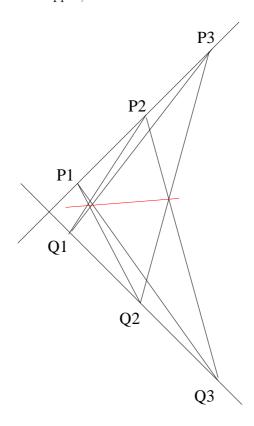
 $\begin{array}{l} \mathbb{P}_2(\mathbb{R}) = \varepsilon(\mathcal{A}) \stackrel{.}{\cup} H \text{ mit } H = \{ < v > | v \in V \} \\ H \text{ uneigentliche Gerade von } \mathbb{P}_2(\mathbb{R}) \text{ bzgl. } \mathcal{A} \end{array}$

Satz 4.6.1

Ist K Körper, so gilt in $\mathbb{P}_2(K) = \mathbb{P}(K^3)$:

- i) Zu $P \neq Q \in \mathbb{P}_2(K)$ gibt es genau eine (projektive) Gerade g mit $P, Q \in g$.
- ii) Sind $g \neq g'$ (projektive) Geraden, so gibt es genau ein $P \in \mathbb{P}_2(K)$ mit $P \in g \cap g'$.
- iii) Jede Gerade enthält mindestens drei Punkte und es gibt drei Punkte, die nicht auf einer Geraden liegen.

- (D) Es gilt der Satz von Desargues (s. § 4).
- (P) Es gilt der Satz von Pappos, d.h.



Definition 4.6.2 (projektive Ebene)

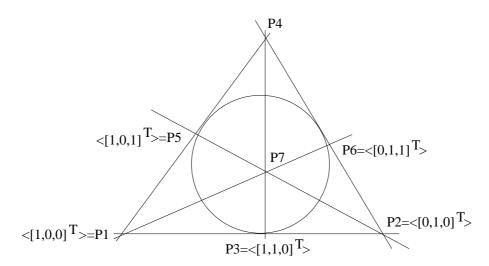
Eine Menge \mathcal{P} (von Punkten) zusammen mit einer Menge \mathcal{G} ("von Geraden") von Teilmengen von \mathcal{P} heißt **projektive Ebene**, wenn (i), (ii), (iii) gelten.

Beispiel 4.6.3

 $\mathcal{P}=\mathbb{P}_2(K), \mathcal{G}=\{\text{1-dimensionale projektive Teilräume}\}$ ist projektive Ebene (K Körper).

Beispiel 4.6.4

Fano-Ebene



$$i = x_0 + 2 \cdot x_1 + 2^2 \cdot x_2, x_i \in \{0, 1\}$$

$$P_i = < \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} > \in \mathbb{P}_3(\mathbb{Z}_2)$$

Satz 4.6.2

Es sei $(\mathcal{P},\mathcal{G})$ projektive Ebene mit $|\mathcal{P}|<\infty$. Dann gilt für alle $g\in\mathcal{G}, |g|=m+1$ und $|\mathcal{P}|=m^2+m+1=\frac{m^3-1}{m-1}$. m heißt **Ordnung** der projektiven Ebene.

Beweis:

. . .

Bemerkung 4.6.2

Ist K Körper, $\mathbb{P}_2(K) = \frac{q^3-1}{q-1} = q^2+q+1$

|K| = a

 $\mathbb{P}_2(K)$ hat (als projektive Ebene) "Ordnung q".

|K| = q ist Primzahlpotenz (s. Algebra I).

Zu jeder Primzahlpotenz q gibt es projektive Ebene der Ordnung q.

Fragen 4.6.1

Gibt es projektive Ebene der Ordnung m mit $m \neq Primzahl$?

m=6 Nein, gibt es nicht.

m = 10 Nein ,gibt es nicht (1993, mit Computer-Rechnung).

m=12