
AIT

Johannes Lipp

10. April 2014

Inhaltsverzeichnis

1 Peer-to-Peer Systems 3
1.1 Unstructured P2P Approaches 3

1.1.1 Central Server: Napster 3
1.1.2 Unstructured P2P (flooding) 3

1.2 Small World and Power Law Networks 4
1.2.1 Small World Networks 4
1.2.2 Random Graphs . 4
1.2.3 Power-Law Distributed (scale-free) 5

1.3 Structured P2P Approaches 6
1.3.1 Chord . 7
1.3.2 Pastry . 8
1.3.3 CAN . 10

1.4 P2P Applications . 11
1.4.1 Internet Indirection Infrastructure (i3) 11
1.4.2 Bittorrent . 12

2 Cloud Computing 14
2.1 Cloud . 14
2.2 Distributed Storage . 15

2.2.1 Cassandra . 15
2.3 Distributed Data Processing 17

2.3.1 Map Reduce . 18

3 Anonymous Communication 19
3.1 Anonymous Communication 19
3.2 Techniques . 21

3.2.1 TOR . 21
3.2.2 Hidden Services in TOR 21
3.2.3 Classification errors 22
3.2.4 Crowds . 22
3.2.5 Mixnets . 23

1

Johannes Lipp

4 Sensor Networks 25
4.1 Sensor Networks Overview . 25
4.2 Node Architecture . 26

4.2.1 Energy of WSN nodes 27
4.3 Routing & Addressing . 28

4.3.1 MAC . 28
4.3.2 Addressing . 31
4.3.3 Routing: Unicast id-cetric 32

4.4 Localization . 35
4.5 Time synchronization . 36

4.5.1 External time sync . 36
4.5.2 Internal time sync . 37

5 Internet of Things (IoT) 39

6 SDN 40

Johannes Lipp

Kapitel 1

Peer-to-Peer Systems

1.1 Unstructured P2P Approaches

1.1.1 Central Server: Napster

1.1.2 Unstructured P2P (flooding)

• Pure P2P: Gnutella 0.4, Freenet
+ No single point of failure
+ Anonymity
+ Fuzzy queries
- High traffic
- Overlay topology not optimal
- Zig-zag routes
- False negatives

• 2nd generation (Hybrid): Gnutella 0.6
Hierarchical layer (superpeers) with high degree, leaf nodes with low
degree
+ As for Gnutella 0.4
- As for Gnutella 0.4
- Asymmetric load

Johannes Lipp

1.2 Small World and Power Law Networks

1.2.1 Small World Networks

• Clustering coefficient c(v):
c(v) = e(v)

deg(v)∗(deg(v)−1)/2 , where e(v) denotes the number of connections
between v’s neighbors

1.2.2 Random Graphs

• Erdös-Renyi:

– gn,m is a random chosen element from Gn,m (set of all graphs
with n nodes and m edges

– m ≥ log(n) =⇒ connected component and diameter grows
log(n)

• Gilbert

– gn,p graph with n vertices
– For each v,w draw an edge between them with probability p
– Clustering coefficient asymptotically equal to p

• Watts-Strogatz-Model

– Ring of n vertices
– Rewire each edge with probability p to a random node =⇒

„shortcuts“

Johannes Lipp

1.2.3 Power-Law Distributed (scale-free)

• The probability a node ist connected to k nodes is P (k) k−y where
(2 < y ≤ 3)
=⇒ Most vertices have a small degree, some „hubs“ have a high degree
„The rich get richer“: new nodes will attach to a high degree node more
likely

• Barbasi-Albert Model
π(v) = deg(v)∑

w∈V deg(w) =⇒ like in Gnutella: nodes with high degree
get more ping messages

• Copying Model

– In each step copy a random node v an all it’s connections
– Connect v with v’

Johannes Lipp

1.3 Structured P2P Approaches
• General

– Location data not stored on the peer providing them but at other
location in network

– Responsibility is assigned by hash function, lookup directly from
responsible peer

– Common address space for data and nodes
– Association may change (nodes enter/leave)
– Search for data = routing to responsible node
– Direct(→ small data stored in node) vs indirect(→ (key, value)

with value = pointer to download) storage

• Joining of a new node

1. Calculate node id
2. Contact arbitrary node in DHT
3. Assignment of hash range
4. Copy k/v-pairs of hash range (maybe redundant)
5. Bind into environment

• Failure of a node

1. Use of redundant k/v-pairs
2. Use of redundant/alternate routing paths
3. k/v-pair retrievable if at least one copy remains

• Departure of a node

1. Partitioning of hash range to neighbors
2. Copy k/v-pairs to neighbors
3. Unbind from environment

Johannes Lipp

1.3.1 Chord

• General

– put(key, value) and value = get(key)
– Ring topology with mix of short/long distance links
– Finger table for node m

i m+ 2i succ.
0 m+ 1
1 m+ 2
2 m+ 4
3 m+ 8
...

– Routing algorithm: To farthest finger predecessing k. On failure:
Route to predecessor (do not overshoot!)

– Soft-state approach: Delete k/v-pair after timeout
– Store multiple successors, if succ[0] fails, take succ[1]

• Node join

1. Pick ID (random, hash(IP+Port) or based on load balance or
geographic position)

2. Construct finger table (Query for each m+ 2i successor and copy
successor list from him)

3. Update finger pointer to new node → O(log2(n))

• Routing not optimal in Chord (overlay vs. unterlay)

Johannes Lipp

1.3.2 Pastry

• General

– Prefix-based tree topology
– base = 2b

– Leaves = key oder node ID
– k/v-pair is managed by numerical closest node
– 2l-Bit identifiers (i = 128)

• Routing

– Top-down in tree
– Longest prefix match (1 prefix/step =⇒ O(log2b(N)

• Routing data per node

1. Routing table (long distance links)
2. Leaf set (numerically closest nodes)
3. Neighbor set (closest nodes e.g. latency)

1. Routing table: dlog(N)e rows with 2b − 1 entries each
Example: b = 2, N = 32, ID = 32101
i / j 0 1 2 3
0 01230 13320 22222 -
1 30331 31230 - 33123*
2 ... -
3 -
4 ... -

* All 33xyz are possible, choose topologically closest
2. Leaf set: Similar to Chord’s successor list, fixed maximum size

Node ID = 32101
Smaller Node-IDs Higher Node-IDs
32100 32023
32012 32022

... ...

... ...
3. Neighbor set: Fixed size, irrelevant for routing

Johannes Lipp

• Routing with destination K at node N

1. If K is in leaf set, route directly
2. Determine common prefix (N,K)
3. Search entry in routing table with longer prefix → route
4. If not possible, search longest prefix from merged tables (routing,

leafs, neighbors) → route (doesn’t happen often)

• Node X wants to join Pastry DHT

1. Determine node ID (hash(IP : PORT))
2. Send JOIN to topologically nearest Pastry A0

3. Copy neighbor set from A0

4. A0 routes JOIN to responsible node Z
→ Each node sends row in routing table → Missing entrys: Take
IDs visited on route → Delete „own-ID-positions“

5. Copy leaf set from Z

• Failure

– „Are-you-alive“-messages
– aks nodes from leaf set for their leaf set
– aks neighbor in routing table for row

• Conclusion
O(log(n)) hops, O(log(n)) storage
→ good support of locality

Johannes Lipp

1.3.3 CAN

• General

– D-dimensional value space
– Complexity (search): O(D

4 ∗N
1
D)

1
2 because of the wrap-around
1
2 because of average case
N

1
D hops in each dimension

– Complexity (memory): O(D)
– „short-distance routing“

• Insertion of a new node

1. Traverse tree until position is found
2. „split“ partial tree

• Removal of a node

1. Ideal case: Region can be merged
2. Otherwise: Neighbor with smallest number of keys gets both (no

merging!)

• Failure of node

1. All neighbors start timer in proportion to size of region
2. Smallest region/timer signals TAKEOVER first

• If N ist known before: Complexity routing and space O(log(N))

• Improvements:
Multiple coordinate systems (with different hash functions) to archieve
shorter paths (but r-time redundancy)
Increase D to archieve more neighbors and thus shorter paths (but
higher node state)

Johannes Lipp

1.4 P2P Applications

1.4.1 Internet Indirection Infrastructure (i3)

• General

– Framework on top of DHT
– Allows multicast, anycast, mobility, QoS,... (what is to complex

for network layer)
– Association of data/services with ID → receiver(s) subscribe to

content by ID („trigger“)

• i3 communication

Receiver: insert(ID,R), R=IP:Port
Sender: send(ID, data)

Node resp. for ID: send(R, data)

• Mobility
ID R1 → ID R2

• Multicast
ID R1
ID R2
ID R3

scale−−−→
ID R1
ID R2
ID X

and X R3
X R4

• Anycast

Prefix: ID of group/service
Postfix: Receiver selection by „longest prefix match“ (random, load ba-

lancing or geographical selection possible)

• Transcoder (in Stack of receivers)

Sender initiated :

Receiver initiated :

• Routing

Computer: Remove address from stack
Trigger: Replace ID with destination stack of trigger

• Triangle problem
Solution: Choose close IDs for private communication (rendevouz point)
How: Random choose and determine RTT

Johannes Lipp

1.4.2 Bittorrent

• General

– Disadvantage P2P: Huge files are downloaded from only one peer
and uplink vs. downlink

– General idea: Make use of idle uplink capacity of users
– Split large files into chunks (chunks get IDs)
– Parallel download: Load different chunks from different sources

• Components

Seeder: In Possession of the whole file
Leecher: Still needs chunk
Swarm: All peers sharing a file (torrent)
Tracker: Central registration instance

→ Knows seeders and leechers → Coordinates communication
between peers

• Torrent file

– Provider hosts torrent file on a web server
– Describes URL or tracker, file name, file size, chunk size, hash

(integrity check)

• Chunk selection

Strict policy: Finish active chunks
Rarest first: Improve availibility of rare chunks

Random first chunk: Maybe the rare chunks are slow to get
Endgame Mode: Load last sub-chunk from multiple peers (fastest „wins“)

• Choking

– Upload to peers who have uploaded to you recently
– New peers are uploaded to on a trial basis
– Optimistic unchoke:

Rotate every 30 seconds, used to discover currently unused connec-
tions

Johannes Lipp

• Anti-Snubbing

– A peer finds itself beeing choked by all its peers (→ slow down-
load)

– Recover fast: 1 minute gone without receiving a sub-piece from
X: Do not upload to it (except optimistic unchoke). → Instead
use more optimistic unchokes to find new friends

• Upload-only Mode

– After a download is ready, leecher becomes seeder
– Upload to the peers with the best upload rate (fast replication)

• + scalability, high throughput
+ good fairness
- centralized tracker are easy to take down

Johannes Lipp

Kapitel 2

Cloud Computing

2.1 Cloud
• Power consumption: 50% on idle, 90% on 50% utilized

• „Server“ = 1000’s of computers (data center)

• Cyclical demand curves (daily, weekly,...)

• Pay-as-you-go paradigm, automatically

• Computing IN the internet

• Only need to know the API, not the underlaying infrastructure

Private: Everything managed

Infrastructure: Databases, security and applications

Platform: Applications

Software: Usage only

Johannes Lipp

2.2 Distributed Storage
• General

– Key/value store
– Similar to SQL
– Scale up (boost ONE server) vs. scale out (buy more servers)

• CAP Theorem
A system can only archieve 2 of this 3 things (Cassandra has 2+3):

Consistency: All nodes have the same data
Availability: Allow all operation all the time

Partition-tolerance: Continue to work in spite of network partitions

2.2.1 Cassandra

• General

– „NoSQL“, not only SQL (some columns are missing from some
entries)

– Put(key, value)
– Get(value)
– Often write-heavy

• Partitioning

– Nodes logically structured in ring topology
– Hashing
– Lightly loeaded nodes move position to highly loaded nodes (ba-

lance)

• Replication

– Each data item is replicated at N nodes
– Rack unaware: Replicate at N-1 successors
– Rack aware: Use a coordinator in rack level
– Datacenter aware: Use a coordinator in datacenter level

Johannes Lipp

• Write Operations

1. Client issues write request at a random node
2. Partitioner determines the node responsible for the data
3. Log to disk commit log
4. Modify memtable
5. Flush memtable to disk (final/read-only sstable)

• Bloom Filter

– Existence-check is cheap
– False positives
– Never false negatives

• Deletes
Don’t delete right away, but add tombstone

• Read
Similar to write, except: Front-end node contacts closest replica, but
also fetches data from multiple replicas (consistency)

Johannes Lipp

2.3 Distributed Data Processing
How to operate on distributed data? =⇒ Parallelize and process data
directly at storage location

• Amdahl’s Law

– S = 1
(1−p)+ p

n
, s=speedup, n=#processors, p=portion of program

is parallelizable
– Upper bound only (communication overhead)

• Request Level Parallelism (RLP)

– Partition within a request AND across different requests
– e.g. Google: Request → spell checker, ad server, index server,...
– Redundant copies of indicies and documents (e.g. „super bowl

2013“)

• Data Level Parallelism (DLP)

– Processing large amount of raw data
– Challenge: Parallelize computation, distribute data
– → Map-Reduce

Johannes Lipp

2.3.1 Map Reduce

• Master-Slave architecture: Slave pulls task from master

• Map
Slice data into chunks:
map(in_key, in_value)→ list(out_key, intermediatevalue)

• Reduce

– Collect and combine sub-problem solutions
– Reduce(out_key, list(intermediatevalue))→ list(out_value)

• Fault Tolerance

– Restarting tasks
– No heart beat =⇒ Execute on a different TT
– Locate slow tasks (Stragglers, speed < average -20%), run red-

undant =⇒ take fastest („speculative execution“)

Johannes Lipp

Kapitel 3

Anonymous Communication

Encryption protects only contents of communication, relationship between
communicating parties remains visible.

3.1 Anonymous Communication
• Identify someone by:

– IP
– Browser Fingerprint
– Search logs (e.g. AOL search engine)

• Censorship

– Public (everyone knows something is blocked) vs. silent (noone
knows the information exists)

– Filtering based on:
∗ Content (keywords)
∗ Domain names / IP addresses
∗ Author
∗ User behavior (request history)

– Blacklisting vs. whitelisting (more restrictive)

• Censorship techniques

– Filtering URLs (proxy)
– DNS censorship: Block domain names
– Filtering of search results (Google China)
– Exclusion from networks (servers and users)
– Deletion of pieces of information (forum, database)

Johannes Lipp

• Basic human right: Free speech, free information

• Identify someone

• Why use P2P Systems?

– Server-based systems are not well suited
∗ Manipulation is easy
∗ Blocking a single server is easy
∗ Trust?

– P2P is able to
∗ Store information redundantly
∗ Retrieve information over multiple paths
∗ These patzs are „black-box“-like
∗ No central administration

• Communication types

– High latency: Non interactive traffic, email
– Low latency: Interactive traffic, instant messaging, TOR, JAP,

I2P, ...

Johannes Lipp

3.2 Techniques

3.2.1 TOR

• Clients select 3 onion routers (OR)

• Layered en-/decryption:

• Over 4000 nodes

3.2.2 Hidden Services in TOR

• Goal:

– Deploy a server that anyone can connect to without knowing
where it is or who runs it (=⇒ resistant to physical attacks)

– Resistant to censorship
– Can survice flood attacks

• Idea

1. Server creates circuit to „introduction points“
2. Server gives intro points addresses to service lookup directory
3. Client obtains intro point address from directory
4. Client creates circuit to a „rendevous point“
5. Client sends address of rendevous point to server (through intro

point)
6. If server wants to talk to client: Connects to rendevous point
7. Rendevous point mates the circuit from client & server

• Warning: Traffic between exit node and responder is not encrypted by
TOR (→ exit node can spy traffic)

Johannes Lipp

3.2.3 Classification errors

Classification errors: false positives & false negatives

• A part c of all URLs are censored

• Classifier detects a censored URL with probability p and harmless with
probability n correctly

• What is the probability a harmless connection is flagged as censored?
Pr(valid|alarm) = n·(1−c)

n·(1−c)+p·c

• Example: c = 1%, p = 90%, n = 5%
→ Raised alarm is false with 0.05·0.99

0.05·0.99+0.90·0.01 = 85% !!

3.2.4 Crowds

Crowds: P2P system for protecting users’ anonymity

• Crowd algorithm

– Based on a simple randomized routing protocol
– Each node runs a „jondo“ process
– Initiator always forwards a request to a random jondo
– All later forward with probability pf to another jondo, 1− pf to

the end server (pf is a system parameter): „coin toss“

• Analysing crowds:

– pf : Forward probability
– n: # honest jondos
– c: # colluding jondos (n > c ≥ 0)
– =⇒ expected path length k:
P (x = k) = pf

k−2︸ ︷︷ ︸
steps to next jondos

· (1− pf)︸ ︷︷ ︸
forward to end server

Johannes Lipp

3.2.5 Mixnets

• Idea

– Send packet over several relays (mixes)
– Each mix modifies (decrypts) the packet
– Packet order is not kept
– Padding: All packets have the same size

• Mix cascade:

– Static mixing vs. dynamic mixing (user selects mixes)
– User encrypts the packet with of each Mix:
E(E(E(...(E(msg, PKn)..., PK3)PK2)PK1)

– Each Mix: Decrypt and send to next destination
– Last Mix: Deliver the packet

• Tasks of a Mix:

– Decode messages (make packet recognition impossible)
– Delete duplicates (prevent replay attacks)
– Collect and delay messages (prevent temporal correlation)
– Reorder messages (prevent temporal correlation)

• Types of Mixes

– Threshold Mix: Buffer M packets, then flush all at once (=⇒
Variable delay)

– Timed Mix: Buffer packets for T seconds and flush all then (=⇒
Fixed delay)

– Threshold pool Mix: BufferM+F packets, flush onlyM random
selected packets (F packets stay in buffer, potentially infinite de-
lay)

– Timed pool Mix: Empty buffer every T seconds but keep F ran-
domly selected packets (only flush if more then F packets are in
buffer, potentially infinite delay)

Johannes Lipp

• Possible attacks

– Trickle Attack (Timed Mixes): Block all traffic except the single
target for T seconds

– Flooding Attack (Threshold Mixes): Inject N − 1 packets after
target Mix has flushed

– Blending Attack (Pool Mixes): Combination of both

• Prevention against attacks

– Encrypt packages between Mixes
– Reroute traffic between Mixes dynamically
– Alternate M and T (# packets to flush and time)
– Send fake messages at flush

Johannes Lipp

Kapitel 4

Sensor Networks

4.1 Sensor Networks Overview
• Possible applications for infrastructure-free networks:

– Car-to-car communication
– Military networking
– Finding an empty parking lot (without servers)

• Challenges

– No central entity → Participants must organize themselves (me-
dium access, finding a route)

– Limited range of wireless communication → Multi-hop network
– Mobility
– Battery-operated devices → Energy-efficient operation (e.g. low

energy
bit)

• Wireless Sensor Networks (WSN)

– Interacting with the environment instead of humans
– MANET (Mobile ad-hoc network)

Examples: Sensor on animals (rats), earthquake warning, volcanic
activity, glacier (→ Mobile Internet Technology)

– Here: WSN: Precision agriculture, logn-term surveillance of ill
patients

Johannes Lipp

– Roles of participats in WSN:
∗ Sources of data: Measure data with sensors
∗ Sinks of data: Interested in receiving data (can be part of
WSN or not)
∗ Actuators: Control some device based on data (usually also
a sink)

– Deployment options for WNS
∗ Random: Dropped by aircraft (uniform distributed)
∗ Regular: Well planned, fixed
∗ Mobile: Sensors can move to „interesting“ areas

– Characteristic requirements for WNSs:
∗ Quality of Service: No traditional QoS, but must still be
„good“
∗ Fault tolerance: Be robust against node failures (out of ener-
gy, destruction)
∗ Lifetime: Network is important, individual nodes relatively
unimportant
∗ Scalability
∗ Wide range of densities (small or vast numer of nodes per
area?)
∗ Programmability / flexibility of nodes
∗ Maintainability: Self-monitoring
∗ Reliability

4.2 Node Architecture
• Main components of a WNS node:

– Controller (µ-Controller)
– Communication device(s): radio, light, ultrasound
– Sensors / actuators
– Memory
– Power supply

• Transciever states

– Transmit
– Receive
– Idle: Ready to receive
– Sleep: Parts are switched off (recover time / startup energy?)

Johannes Lipp

• Optical communication: Reflect laser by a mirror

• Ultra-wideband communication: Emit short „burst“ of power

– Short pulse with large bandwidth
– Requires tight time sync
– Short range
– Good wall penetration & multi-path propagation

4.2.1 Energy of WSN nodes

• Energy supply of mobile / sensor nodes

– Primary batteries: Not rechargeable
– Secondary batteries: Rechargeable by environment:
∗ Light
∗ Tempterature gradients
∗ Vibrations
∗ Pressure (e.g. on a shoe)

– Energy consumption (example): Energy
Instruction = 1nJ ,

Battery = 1J = 1Ws =⇒ 109 instructions

• Switching between modes (active/sleep)

1. Simple idea: Greedily switch to sleep wnenever possible
– Problem: Time an power needed to switch to active mode

again
– Switching only pays off if Esaved > Eoverhead

2. Alternative: Dynamic voltage scaling
– Run device with lower voltage & clock instead of changing

modes
– Power consumption p depends on clock frequency f and Vol-

tage V :
P ∼ f · V 2

• Time to transmit n Bits (R data rate, Rcode coding rate):
n

R·Rcode

Johannes Lipp

• Computation vs. communication energy cost: Try to compute instead
of communicate whenever possible!!!

4.3 Routing & Addressing

4.3.1 MAC

• Hidden Station:

– C does not see A, sees a „free“ medium (CS fails)
– A cannot hear the collision at B (CD fails)

• Exposed Station:

– B sends to A, C has to wait (CS signals that the medium is in
use)

– But A is not in range of C =⇒ Waiting is not necessary!

• Receiving is about as expensive an transmitting

• Energy problems:

– Collisions
– Overhearing (Listen to a packet destinied for another node)
– Idle listening (Listen when nobody is sending)
– Protocol overhead

Johannes Lipp

1. Centralized Medium Access (Polling, centralized computation of sche-
dules

• Simple, no collisions
• Needs a central station
• Overhead an delays
• Big network sizes?

2. Contention-based protocols

• Risk of colliding packets is OK
• Usually randomization somehow

3. Schedula-based MAC

• A schedule exists (fixed or computed on demand)
• Needed: Time syncronization!

2. Contention-based Access (CSMA/CD Ethernet, Aloha, Slotted Aloha)

• Protocoly specify: How to detect collisions and how o recover
from collisions
• Aloha

– Idea: When you’re ready: Transmit, detect collisions by ACK
timeout

– Recover from collision by retransmission after random inter-
val

– Problem: No common packet langth, even small overlaps de-
stroy both packets

– Efficiency: 18%

Johannes Lipp

• Slotted Aloha
– Sending must start at slot boundaries
– Fixed packet length
– If collision: Retransmit in future time slots with probability
p, until success

– Effiency: 36%

3. Schedule-based MAC

• DAMA (Demand Assigned Mutliple Access)
– A sender reserves a future time slot
– Sending within this time slot without collision
– But: Higher delays due reservation

• Explicit Reservation (Reservation Aloha)
– Aloha mode for reservation („competition“): Collision possi-

ble
– Reserved mode: Transmission only withn reserved slots (no

collisions)
– Time sync!!!

Johannes Lipp

• Implicit Reservation: PRMA (Packet Reservation MA)
– Competition for empty slots (Slotted Aloha principle)
– Reservation is valid until the station does not send in the

reserved slot
– Slot was empty in previous frame =⇒ New competition

• DAMA: Reservation-TDMA
– Every frame consinsts of N mini-slots and x data-slots
– Every station has its own mini-slot, can reserve up to k data-

slots with this mini-slot (x = N · k)
– Unused data-slots: Other station can send (Round-Robin sche-

me)

4.3.2 Addressing

• In WSN: Often content-based addresses (But: Are not known before,
have to be computed „in the field“)

• Names vs. addresses

– Names: Refer to „things“, often unique
– Addresses: Information needed to find these things, often unique
– Name ↔ Address: DNS, phonebook

Johannes Lipp

• Distributed address assignmnet: Options

1. Pick randomly addresses (risk of duplicates?)
2. Avoid addresses used in local neighborhood (listen to channel

before)
3. Repair comflicts:

– Pick random address
– Send request
– If address reply arrives, it already exists

4. As 3, but contact a neighbor that has a fixed address already

4.3.3 Routing: Unicast id-cetric

• Each node has a unique ID

• „Routing“ = Construct a table that contains information how nodes
can be reached

• „Forwarding“ = Use this table and forward to the next hop

• Optimization metric can be „smallest hop count“, „energy effiency“,
„network lifetime“ (based of current battery levels), ...

• Ad-hoc routing protocols

– Link state: Too much overhead
– Distance vector: Too slow in reacting to changes
– Simple solution: Flooding (simple but not acceptable in wireless

systems because of energy waste & overhead)

• When does the routing protocol operate?

1. Proactive: Always try to be up-to-date, have tables before they
are actually needed

2. Reactive: Determine route when actually needed (on demand)
3. Hybrid: Combine 1+2

Johannes Lipp

1. Proactive Routing: OLSR (Optimized Link State Routing)

• LSR: Broadcast local link cost
• Optimization:

– X’s broadcast is only forwarded by its multipoint relays
– Multipoint relays: Set of X’s neighbors which is connected to

all two-step neighbors of X
– =⇒ Select a minimum (dominating set) of them

1. Proactive protocols: DSDV (Destination Sequence Distance Vector)

• Add aging information to propagated route information (avoid
loops)
• Periodically send full route updates
• On topology change, send incremental route updates (=⇒

Unstable route updates are delayed)
• Still lot of memory & traffic needed

2. Reactive protocols: DSR (Dynamic Source Routing)

1. phase: Flood the network (with a small discovery packet)
2. phase: Packet reaches destination
3. phase: Stored used path is send back as answer (along this path): Back-

ward learning

2. Reactive protocols: AODC (Ad-hoc on Demand Vector)

• Very popular
• Same as DSR, but nodes maintain routing tables instead of using
Source Routing
• Nodes on a route remember where packets came from→ Routing
tables
• Less overhead but higher delay than proactive

Johannes Lipp

• Link (Quality) Estimation

– Which neighbors are good for communication?
– ETX (Expected transmission count): Choose routes with high

end-to-end throughput
– # of data transmissions required to send a packet (including re-

transmissions)
– ETX of a route = sum of ETX of links on the route
– Forward/reverse delivery ratio df/dr: Probability that a data

packet / ACK recieves
– ETX = 1

df ·dr , ETX for each node to destination node X is sum
of link ETX values

• Pro-active Routing: Beacon Vector Routing (BVR)

– Virtual coordinate based addressing
– Randomly select a few beacons
– Construct trees from beacons to every other node
– Every node knows its distance to every beacon (tree → reverse

path)
=⇒ This beacon vector = coordinates, e.g. 〈q1, q2, ..., qr〉 =
〈5, 1, ..., 3〉

– Beacon Vector Routing in three parts:
1. Greedy forwarding
2. Fallback mode
3. Scoped flooding

• 1. Main Rule: Minimize the sum of differences for the beacons that
are closer to the destination than current p
δ+(p, d) =

∑
imax(pi − di, 0), Rule: „Start - Dest.“

2. Ties in above → Minimize sum of differences to farther beacons:
δ−(p, d) =

∑
imax(di − pi, 0), Rule: „Dest. - Start“

3. If 1+2 Fail: Scoped flood

Johannes Lipp

4.4 Localization
Localization: Need for a node to determine its physical position

• Proximity: Exploit finite range of wireless communication

• Trilateration / Multilateration and angulation: Use distance or angles
with simple geometry

• Scene analysis: Measure environment „signatures“ befordhand, then
compare and create wireless fingerprints

• Recieved Signal Strengh Indicator (RSSI): Send out signal of fixed
known strength to estimate distance
Formula (not important):
Precv = cPtx

dα ⇔ d = α

√
c·Ptx
precv

• Time of Arrival (ToA): Use time of transmission, propagation speed
and time of arrival to compute distance. Exact time sync needed!

• Time Difference of Arrival (TDoA)

– Use two different signals with different propagation speeds
– Compute difference to compute distance
– Problem: Calibration, expensive hardware, energy

• Also: Overlapping activity: Receiving mutliple signals =⇒ Must be
in range of all of them

Johannes Lipp

• Multihop range estimation (two ideas):

1. Average hop length is known
Distance = #hops · length per hop

2. All exact hop lengths are known
Distance =

∑
hop lengths

• Iterative multilateration: After a node calculated its location, share it
with neighbors (Problem: Errors accumulate)

4.5 Time synchronization
• Example: Use array of sensors to estimate angle of arrival Θ

• Clocks in WSN nodes

– Counter register is incremented by pulses
– Register of node i at real time t is Hi(t)
– Notation: Small letters = real time, capital letters = timestamp

etc.
– Clock speed drift: Θi = drift rate, Φi = phase shift
– A node’s software clock: Li(t) = Θi ·Hi(t) + Φi

– Tyme sync algorithms modify Θi and Φi, not the registers

4.5.1 External time sync

• Syc with external real time scale like UTC (atomic clock)

• At least one node must have access to external time scale

Johannes Lipp

4.5.2 Internal time sync

No external timescale, nodes should have a „small time“ difference only
(pairwise)

• Source of inaccuracies

– Phases Φi are random (nodes are switched on at random times)
– Oscullator deviation: ppm (pulse per million), depends on oszil-

lator aging & envorinment

• Post-facto synchronization

– Nodes do not sync all the time (energy)
– External event happes at time t:
∗ Node stores local timestamp ti
∗ Do time sync (neighbors / sink)
∗ Convert Li(t) accodingly

• Time sync algorithms: Two fundamental classes

1. Sender/reciever sync
2. Reciever/reciever sync

• LTS (Lightweight Time Synchronization) (→ image on the next page)

– Sync all nodes to one reference clock
– Correct only phase shofts, not drift rates
– Pairwise sync, network-wide (minimum spanning tree, root = re-

ference node R)
– R syncs its neighbors, then first-level neightbors, ...
– Cost per sync: 3 Packets → 3 · n packets

Johannes Lipp

– Goal: Compute ∆ = Li(t1)− Lj(t1)

– Solution: ∆ = Li(t8)−Lj(t6)
2 − Lj(t5)−Li(t1)

2

• Distributed Multihop LTS: No explicit construction of spanning tree,
but implicit (node 42 syncs „directly“ with R)

• Missing: TSync: Combines HRTS and ITR

Johannes Lipp

Kapitel 5

Internet of Things (IoT)

missing.

Johannes Lipp

Kapitel 6

SDN

missing.

	Peer-to-Peer Systems
	Unstructured P2P Approaches
	Central Server: Napster
	Unstructured P2P (flooding)

	Small World and Power Law Networks
	Small World Networks
	Random Graphs
	Power-Law Distributed (scale-free)

	Structured P2P Approaches
	Chord
	Pastry
	CAN

	P2P Applications
	Internet Indirection Infrastructure (i3)
	Bittorrent

	Cloud Computing
	Cloud
	Distributed Storage
	Cassandra

	Distributed Data Processing
	Map Reduce

	Anonymous Communication
	Anonymous Communication
	Techniques
	TOR
	Hidden Services in TOR
	Classification errors
	Crowds
	Mixnets

	Sensor Networks
	Sensor Networks Overview
	Node Architecture
	Energy of WSN nodes

	Routing & Addressing
	MAC
	Addressing
	Routing: Unicast id-cetric

	Localization
	Time synchronization
	External time sync
	Internal time sync

	Internet of Things (IoT)
	SDN

