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1 Exercise from 10-19-2005

1.1 Semantics of regular expressions
[e] := {e}, [0] =0, [a] = {a} Vaex
If r, s are regular expressions then
o [r+s]:=[rTulsl]
o [r-s]:={uweX*|ue[r],vel[s]}
o [r] ={weX*|IneN:w=u...u, and u; € [r] Vi <n}

Note: We often do distinguish syntax and semantics! E.g. we often write U -V, rUs, r-U.

1.2 Definition (w-regular language)

An w-regular language over ¥ is of the form 71 -s{+- - -+, - sy for some n € N and regular expressions

ri,8; for all i < n.

semantics: extend semantics of regular expressions by
o [r“] ={a e |a=wws...,w; € [r] Vi e N}
o [r-s¥]:={aeX|a=wp, welr],sec[s*]}

o 718¥Y 4 rysY = U [ris?]

i<n

Note:
o (s), sw-r,s¥ -1 r-(sY+ s4) are not w-regular expressions!

. []=10

1.3 Connection to Biichi automata

Recall: Given a BUCHI automaton 2 = (Q, X, g, A, F'). The language L(2() can be described by the

w-regular expressioin

U quqWqu
qeF

where Wy, is the regular language recognized by the automaton 2, , = (Q, %, p, A,{q}). From A (by
KLEENE’s theorem) we can construct r,, such that [rp,] = L(2,q).



1.4 Example

a "reaching” loop
2 @ Wooar = (a+b)*a Wog = a”
@ Waogs = (a+b)*ab(ab)*  Weag, = (ab)*

e
N
q2 /?“

Thus L(2A) = (a + b)*a(a*)* + (a + b)*ab(ab)*((ab)*)* = (a + b)*a* + (a + b)*(ab)“.

2 Exercise from 10-26-2005

Biichi’s complementation procedure

a,b a
2A g w recognizes L(A) = (a + b)*a®.

2.1 Equivalence relation ~g

,a€Q((p=q & poAp=q & p=4q) = u~yu.
Lemma: ~g is even a conguence, i.e. Yu,v € X* Va € X u ~g v — ua ~g va.

Consequence: Yu,v € ¥* Va € ¥ [u] = [v] = [ua] = [va].

2.2 Transition profiles

) [€] la] [b] [aa] | [ab] | [ba] | [b0] | [baa] | [bab]
@ a l1—1|1—-1}|]1—-1|1—-1|1—-1|1—-1|1—-1|1—-1|1—1
m@#@@ 2=2|1=2 1=2 1=2 1=2
2= 2 2=2
=la] | =1b] =[b] | =[ba] | =1b]

], [a], [b], [ba] are all equivalence classes. Proof: Use Congruence Lemma.

2.3 Computing the equivalence classes as sets

Recall: Wy :={u|A:p->q} and Wil ={ul|2A:p = q}.
Fact: (from the definition of ~g)

[u] = the intersection of
. U o U
e all W), with p — ¢, all W, with p = ¢

o all ¥*\ W, , with not p = ¢, all £* \ W, with not p = ¢



avb: @ Wii=(a+br=%" W{j=0

=0
W2 o =10 Wi, =a* >+ \W2 2= a*b(a +b)*
€] = SO\WEAWE, = (a*b) Na* =¢
[a] = WiHNWE, =(a+b)a™ Na* =a*
] = Z\WLNS\ WS, = (a*b)* Na*bla+b)* = (a*b) "

[ba] = W{,NZ*\ WS, = (a+b)*a™ Na*bla+b)* = a*b(a+b)*a®

equivalence classes:

[e] =€
[a] =aT
[b] = (a*b)*

[ba] = a*b(a + b)*a™
Wa = {[e], [a], [b], [ba]} and £ = [e] U [a] U [b] U [bal.
Task: Compute U,V such that U - V¥ ¢ L(A) = (a + b)*a®. Therefore V = [¢] or V = [a] is not

allowed. All other combinations contain o ¢ L(2l).
Hence:

YY\L®) = (a*b)* + (a*bla+b)*a™)*

+at(a*b)* +at(a*bla +b)*at)*
+(a"b)” + (a"b) " (a"b(a + b)"a")*
+(a*b(a + b)*a™)(a*b)¥ + (a*b(a + b)*a™)¥

3 Exercise from 11-02-2005

3.1 Exercise 1

(c) Idea: rewrite L3 into ”from some point onwards: after every a either b or ¢’ (such that Lj

characterizes a BUCHI automaton).

BN
b,c

a,b,c b,c



3.2 Exercise 2
(a) (a+b+c)aala+b+c)¥
(b) ((a+b+ c)*aa)”

(c) (a+b+c+aa)*(b+c)+alb+c))

3.3 Exercise 3

There exists a function b : N — N such that

(i) V BUcHI automata A with n states with L := L(A) # 0 Jw € X* with w = wv, uwv¥ € L and
u] + Jo] < b(n).

(ii) 3 a BUcCHI automaton A with n states such that fw € L := L(A) with w = wv* and |u| + |Jv| <
b(n).

Proof: Set b(n) :=n.
Since L(A) # 0 there exists a loop in the graph of A such that

e it contains a state q; € F

e it is reachable from initial state gg

TN
——= G0 ~~q v @

S
Define u,v, we know uv* € L(A) where we choose u to be as short as possible, i.e. |u| :=m < n. The

path go ~~~ ¢ does not contain a state from loop (except the last one). So only n —m states remain
for loop.
The bound b(n) = n cannot be improved:

Consider the family of BUCHI automata (A, )nen.

b
e oS

L(A,) = a® 1%, Obviously a” 16 cannot be decomposed in u, v with |u|+ |v|< n and uv®” = a® b,
O

4 Exercise from 11-09-2005

4.1 Exercise 4

¥ ={a,b,c}.



o L :={a € X¥|a contains at least one infix ab and one infix ac}.

% \\C\(CQ(I,I),C
NS
a
O —>20

a,b,c

Automaton:
a,b,c

().

O —>0O
a,b,c

().

—> 0 —>20

w-reqular expression: (a + b+ c¢)*a*(b(a + b+ ¢)*ac+ c(a + b+ c)*ab)(a + b+ ¢)¥

o K :={a € ¥ |if a contains infinitely many a then « contains infinitely many b}.

Automaton:
a,b,c

QJ a,b,c

sy

%O%(@D
a,c )/b be

b

w-regular expression: (a+b+c)*(a+b+c)(b+c)* + (a+b+c)*b(b* +b*(a+ c)(a+ b+ ¢)*b(¥
direct construction: X*(b+ ¢)¥ + X*(bX*)% (here ¥* instead of (a + b + ¢)*).

4.2 Exercise 5

(a) w-reqular expression: (a + b)*a(a + ba)*,
L(A) = {a € ¥ | a contains finitely often the infix bb}.

(b) ~4-class: shortest representatives and transition profiles



Transition profiles of u € X*:

Vp,q € Q, is there a transition
in A that leads from p
to ¢ and is labeled by u?

\es u
p—4q
/

Does one of these paths
visit a final state?

u~agve (Vpq:(p>qep > AP=qep=q)

~_4 is a congruence (not only right-congruence): If u ~ 4 v, then Ywy,we € ¥*: wijuwy ~4
WVW2.

Consequence: u ~4 v and |v| < |ul, then every word that has u as prefix is equivalent to some
word that doesn’t have u as prefix and is shorter than the first word. uw ~ 4 vw = ux ~ 4 vr.

transition profiles:

€] [a] 0] [aal] [ab] [ba] [bD] [aba] | [abb] | [baa] | [bab]
l—-1({1-1|{1—-1|1—-1}|1—-1|1—-1|1—-1|1—-1|1—=1|1—-1|1—1
2=2|1=2|2=3|1=2|1=3|1=2 1=2 1=2|1=3
3=3|2=2 2=2|2=3|2=2 2=2 2=22=3
3=2 3=2 3= 2
= [d] = [a] | =[b0] | = [ba]

[bba] | [bbb] | [baba) | [babb] | [bbaa] | [bbaba] | [bbabb]
l1-1/1-1|1—-1}|1—-1|1—-1]1—-1|1—=1

1=2 1=2 1=3| 1=2
2=2
= [bb] | = [ba] | = [bD] = [bba] | = [bD]

e.g. verify aa ~ a = baa ~ ba.
(c) Each a € ¥* can be factorized as a« € U - V¥ with U and V equivalence classes of ~ 4.

— a1 = ababbabbbabbbba . . .

Since bbb ~ 4 bb we get ab...b ~ 4 bb. Thus a; € [ab] - [bb]*.
n>2



— a9 = abaabaaabaaaa . . .

Since aa ~4 a we get ba...a ~4 ba. So ag € [a] - [ba]*. Alternative: g € [¢] - [a]*.

n>2

10



(d) direct construction:
a,b

()
—— T

b
¥\ L(A) = {a € ¥ | a contains infinitely many bb}.

5 Exercise from 11-16-2005

5.1 Exercise 6

UP defines the class of ultimately periodic words.
Claim: UP is not regular.
Assume that UP is regular, then ¢\ UP is also regular. But any regular language contains an

ultimately periodic word. Contradiction. O

5.2 Exercise 7

(a)
be b,c
o Q/q\qg) F={ar} . 22})
~— L) = Ly

Remark: MULLER automata: F C 19. Run p is accepting :< Inf(p) € F.
(b)
F = et A} A ac}s {90} {das e} }-

(Exclude {qq, 9}, {qa> qb, qc}, the rest must work.)
{qc} : neither a nor b was seen.

{a}, {aqv, qc} : b was oo-often but a finitely often seen.
{¢a},{4a,qc} : @ was oo-often but b finitely often seen.

5.3 Exercise 8

(a) Let U C ¥*, U finite, L =U - X“.
Claim: L is E- and A-recognizable.
Proof: W.lo.g. (without loss of generality) assume that U contains only max. elements
w.r.t. (with respect to) C-relation (prefix-relation).
welU,w Cw, w#w =w ¢U.

11



Define T := {w' Cw | w € U,w' € ¥*}, E, := {(w,wa) | wa € T}.
Example: U = {aab, abb, b}

E-automaton 2 : L(A) =1L

A-automaton:

(e
all final states (dashed)
e \? — new sink-state S
a D
G@' i\ﬁ (aa ) /I\ab/l
a,b b a b

(b) Let L be E- and A-recognizable.
complement-lemma: X\ L is E-recognizable. [swapping final/non-final states]
There is an E-automaton 2 with L(2) = L.
There is an A-automaton 2" with L(') = L
To contradiction: Assume there is no finite U C X* with L =U - 3.
Let T:={w e ¥ |Jo,f € E* twa € LAwf ¢ L}

o
.
[ ]
a B

€L ¢ L

= T is prefix-closed and with F, as before: T is a tree. Assume that 7T is finite.
For any leaf of T, w and any a € ¥

* either Vao € X% : waa € L

* or Ya € ¥ : waa ¢ L.
Define U :={wa € ¥* |w € T, w is a leaf,a € ¥,Va € £ : wax € L}.
Assume that T is finite. X is finite = U is finite and L = U - . Contradiction to T is
finite. = T is finite.
Tree T infinite and finitely branching (|X| < o0).
Konig‘s lemma = there is an infinite path in T, i.e there is uX“ such that each finite prefix

of u belongs to T'.

Does 2 accept u? If 2 accepts u = assumes final state after wuq,...,u,, (finitely many)
B¢L.
But L = L(2). So th is NO! = L
b (). So the answer s ué Contradiction!
Analog.: ' cannot accept u. = u ¢ X\ L=ue L

12



6 Exercise from 11-23-2005

6.1 Exercise 9

UV Y, UY:={aeX|a=umugus...,u; € U}.
lim(U) = {a € £ | Vi 3j with § > i: af0...4] € U}
Ut i={veX|3k>1Lv=u...upu; €U}

(a) U¥ =1lim(U*)? Answer: NO.

— U¥ Clim(U"): Let a € UY, then a = ujugug ... with u; € U, thus uy, ujus, ujusug,. .. €
U*. Thus Vi 35 such that «[0...j] € U (choose j such that j = |uy...w| > i). =
a€lim(UT) = U Clim(U™).

— lim(U*) € U¥: Choose U = ba*.

Choose a = ba® € lim(U) C lim(U™).
By definition of U¥ every word in (ba*)* will contain infinitely many b. = «a ¢ U*. O

(b) im(UUV) =1lim(U) Ulim(V). Answer: YES.
"D7: Let € im(U) Ulim(V'), w.lo.g. a € lim(U). = o € im(U U V).
"C”: Let o € lim(U UV). Then Vi 35 such that «[0...j] € U or a[0...j] € V.
Let Ny :={j|al0...j] €U} and Ny :={j | a[0...j] € U}. At least one of the two sets has to
be infinite. = Either o € lim(U) or « € lim(V'). O

6.2 Exercise 10

Every deterministically co-BUCHI recognizable language is also deterministically MULLER recognizable.
Proof: Let A= (Q,%,qo,9, F) be a deterministic co-BUCHI automaton. A accepts o € X¢ if Ji such
that Vj > i we have p,(j) € F, i.e Inf(p,) C F.

Choose B = (Q, %, qo, 6, F) where F = 2 = {A | A C F}. Then

aeL(B) & Inf(py) € F & Inf(p,) CF & a€ L(A)

6.3 Exercise 11

L:={a €{0,1}* | « contains infix 00 infinitely often, but infix 11 only finitely often}.
Show in 3 steps:

13



co-Buchi Buchi

(a) A deterministic MULLER automaton for L (intuitively):

F={FCQ|5€F3¢F}
3 Q 1 equivalent:
F={{5},{2,4,5}}

(b) L is not BUCHI recognizable.
Proof: Assume it is, e.g. by A.
Consider a; = 110¥ € L, on oy A enters a final state, e.g. for the first time after 110™.
Consider ap = 110™110% € L, A enters a second final state, e.g. after 110™1110™2.
Consider ag = 110"110™110% € L, ....

We obtain an infinite sequence of w-words «1,as9,... € L, the runs of A on the initial parts
agree. Thus a forming the common extension of («;); the automaton A will enter a final state

infinitely often, but « contains 11 infinitely often. Contradiction. O

(b) L is not deterministically co-BUCHI recognizable.
Assume it is, e.g. by A with n states.
Let o = (00(01)" 1) € L.

From some point onwards A only enters final states on a, e.g. after reading (00(01)"*1)™, so on
(00(01)™+1)™ (00(01)"*H).

N———

only states € F'
= o = (00(01)"*1)™O0(01)~ is accepted by A, but o’ ¢ L. Contradiction. O

14



7 Exercise from 11-30-2005

7.1 Exercise 12

(a) Every nondeterministically E-recognizable language is also nondeterministically
STAIGNER-WAGNER recognizable.
Proof: Let A= (Q,X%,qo, A, F) be E-automaton. Construct B = (Q’, %, ¢(, A’, F) a STAIGNER-
WAGNER automaton by choosing Q' := Q, ¢() :=qo, A :== A", F:={F' CQ | F'NF #(}.
Then V « € X¥: A E-accepts «
< there exists an infinite run p, of A on « such that a state from F is visited
& Occ(p) NF #0
< Occ(py) € F < B accepts a. O

(b) Every nondeterministically STAIGNER-WAGNER recognizable language is also nondeterministi-
cally co-BUCHI recognizable.
Proof: Let A = (Q,%,q0,A,F) be STAIGNER-WAGNER automaton. Construct co-BUCHI au-
tomaton B = (Q', 3, ¢yA’, F’) as follows:
Q' :=Q x2% g := (q,0).
A’ given ((p, P),a,(q,R)) € A’ & (p,a,q) € Aand R=PU{p} Vp,q € Q Va € X VR, P € 29.
F' = {(p,F) | F € F}.
Then for a € X¥: A STAIGNER-WAGNER accepts «
< 3 infinite run p, of A on « such that Occ(p,) € F.
< 3 infinite run p/, of B on « such that from some point onwards only states (x, P) for some
P € F are visited.
& B co-BUCHI accepts a. O

(c¢) Every nondeterministically co-BUCHI recognizable language is also nondeterministically
E-recognizable.
Proof: Let A = (Q,%,q0,A,F) be a nondeterministic co-BUCHI automaton. We construct
B=(Q %, qpA", F) E-automaton as follows.
Q' =QUU{1} x F), F':={1}xF, g)==a
A= AU{(p,a,(1,9) | (p,a,q) € A,qg€ FYU{((1,p),a,(1,9)) | (p,a,q) € A,q,q € F}.
Then A co-BUCHI accepts o € X%
< dinfinite run p, such that only states from F' are seen.
< J run p/, such that finally only states from {1} x F' = F’ are seen.
< B E-accepts a. O

7.2 Exercise 13

Let L be the language recognized by the given automaton. Apply LANDWEBER’s theorem:

15



(a) L is deterministically E-recognizable iff F is closed under reachable loops. = L is not determin-

istically E-recognizable.

(b) L is deterministically BUCHI recognizable iff F is closed under superloops. = L is deterministi-
cally BUCHI recognizable.

algorithmic solution:

b
BEU D= = NI NN
b
a a
a
2.{1}  1,{13) b
a 27{173}T 17{3}
a
3. {3}

b
8 Exercise from 12-07-2005

8.1 Exercise 14
L ={a € ¥¥]| if a occurs in « then b occurs later on}.

(a) STAIGNER-WAGNER-automaton for L with F = {{1},{1,2,3}}:

(b) TARJAN’s SCC (strongly connected components) algorithm on graph G-

1. Do DFS (depth first search) through G and remember enter/farewell times.

2. Reverse edges of graph G. — G

16



3. Do DFS on G starting from vertex with highest farewell.
The reachable vertices form a SCC S of G.

4. Repeat step 3 without S.

Given Automaton A:
a

b Ly @ Q b, 4
b
5. -6 bty @b 8
a
1
bk
), s [

b a b
S ) o

DFS through A:

Notation is used, whereas E indicates the step number at the entering into the current
state ("enter”) and F' the step number while leaving the current state (”farewell”).

Edge-reversed Automaton A:

II

The red marked components are the SCCs.

17



8.2 Exercise 15

For n > 1 there exists L, := a{ +---+a¥ (with X,, = {a1,...,a,}, which is accepted by a STAIGNER-
WAGNER automaton with n accepting state sets but not by one with n — 1.
Proof: ay
1. L is accepted by O
1_Zn\{a1}

a/lv \
—0_ i T )%
C) o\ {an}
with acceptance sets F = {{0,i} | i <n}. ™
2. L, cannot be accepted by STAIGNER-WAGNER automaton with only n — 1 acceptance sets.
Assume there is such an automaton A. There exist ¢ # j and runs p of A on a¥ and p’ of A on
a4 such that Occ(p) = Occ(p’) € F. Let m minimal such that Occ(p[0...m]) = Occ(p).
Let p(m) = ¢ € Occe(p’).
w
J

Choose suffix p” of p’ starting with ¢, then p(0)...p(m — 1)p” is a run on a* 'a¥ with same

occurrence set. Contradiction. O
8.3 Exercise 16

Surprise: A nondeterministic Staigner-Wagner automaton cannot be determinized!
Proof:

1. Every nondeterministic STAIGNER-WAGNER automaton can be completed by creating a new

sink state to which all missing edges are connected.

2. Assume STAIGNER- WAGNER automaton can be determinized.

Then the following class inclusions emerge:
ndet-co-Biichi "2 ' ndet-SW = det-SW G det-co-Biichi.

But this is a contradiction to the class hierarchy! O

9 Exercise from 12-14-2005

9.1 Example: S1S definable property

e property: P; holds from some odd position onwards, e.g.

0010110111

T T
0 7

18



e formula (intuitive): ¢(X7) = Ft(t odd AVs >t : X1(s))

How to formulate "odd”? Answer: second order logic.

01 010101
01 234567

Replace "t odd” by "3Y (=Y (0) AVE(Y(t) < Y(T")))”. The resulting formula would then be

AY[(-Y (0) AVEY (t) < Y (T")) AIt(Y (t) AVs >t : Xq(s))].

e Notation: The sequence

1 1 1 1 11
1 1 1 is written as 1 1 1
1 1 1 1 11

9.2 Exercise 17

(a) L ={a € {0,1}* | a contains 00 infinitely often, but 11 only finitely often}. Deterministic RA-

BIN automaton (thanks to Klaus)

0 quo/l O\QMD 1
WA

q10

remembers every last two read letters. Q = {({q11},{qo0})}

(b) L recognized by a RABIN automaton A with Q@ = {(Q1, F1), ..., (Ex, Fx)} and E; =0 V1 <i < k.
By definition « is accepted by A iff Inf(p, )N F; # 0 and E;NInf(p,) = 0 (which is always satisfied
in this situation) for some 7.

If we choose F' = Ule F; then A with F' as a BUCHI automaton accepts L.

9.3 Exercise 18

Tool: http://www-i7.informatik.rwth-aachen.de/d/research/omegadet.html

Short description of the MULLER-SCHUPP - algorithm to calculate an update step of the deterministic

MULLER automaton from an initial tree ¢ on the input symbol a € X:

1. Copy t, replace green by yellow.

2. (a) Delete state sets P of each leaf.
(b) Introduce sons labeled with P’ :={q |3p € P: (p,a,q) € A}.

19



(¢) Delete all states which occur also more to the left proceeding from right to left.

(d) Split any set into its final and non-final states producing a left son labeled green and a right

son labeled red respectively, each named with a free node name.
3. Delete all nodes which did not get a new non-empty (and hence named) descendant.

4. Compress path segments into their top node, giving it color green if merged with a path segment

containing a green or yellow node.

MULLER-SCHUPP - construction (for better readability is set to blue):

Given automaton A on the input word o = ababb(ab)“.

e initial tree:

1:qo
e Process a:
1:qo 1: 1: 1: qoq
1 2a,b 2¢.d 4
~~ ~ qoq1 ~ 2iq0q
e Process b:
1:q0q1 1: 1:
1 2a,b 2¢,d 34
~ ~ 409192 ~ 3:q0n 77
e Process a:
1 1: 1
2:q 3 qoq1 2: 3: 2: 3:
1 2a,b 2c
~ ~ q1 q091 ~ qa q0
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2 3:
24,3
~ 4 L q1 5 - qo
e Process b:
1:
2:qq 3:4q0

1
>

e Process b:

/\
J\

2:q
4
~>
2:
2a,b
4:q1q2
2a,b
~ 0

21
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/\
/\

2¢,d, 3,4
5:qo ~r

/\
/\ |

q142



[

2 3
4: 5: 8:qo 5: 8:qo 7:q1
, / \ .
7iq ~ 7:q ~~
e Process a:
1 1:
2 3:qo 2 3
6:q2 7T:q 6: 7. Qoq1
1 2a,b 2c
1 1 1

(@)
N
)
S

(@)
\]
ot

1 qo 6 : 91 qo

q1 0 ~ 4:q ~ 4:q
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~ 3

*qo
Result: The states of the deterministic RABIN automaton are the last MULLER-SHUPP trees in each

processing step. So the run of the resulting deterministic automaton is:

1:qo 1:qon 1:

AN

 qoq1 - 2:qq 3:qo

NN
NVANVANN

Note: There are other constructions like the SAFRA construction which are more complex but yield

better results in the tool.

10 Exercise from 12-21-2005
10.1 Exercise 19
Given X, = {#,1,...,n} and nondeterministic BUCHI automaton A,, with L(A) =: L,,.

(a) Characterization by sequences.
a € L, < 3Jasequence iyig igis ... ig_10g ki1, 1,J € X\ {#},

which is repeated infinitely often and starts with #.
The deterministic MULLER automaton checks wether such a sequence exists.
Choose Q = X, X ¥, U {qo,¢s}- A consists of rules

— (ab,c,be), a,b,c € ¥y,

- (QO7#7 11)7 (QO7a7 QS)a (S En \ {#}7
- (QSaav QS)7 ac En
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For F we add F' C @ to F iff F' contains a characteristic sequence.

Note: The relation A also defines a transition function here.

(b) Recall LANDWEBER’s theorem:
Let L be recognized by a deterministic MULLER automaton with accepting component F, then:
L is recognized by a deterministic BUCHI automaton iff F is closed under superloops.

= L, is deterministically BUCHI recognizable.

10.2 Exercise 20

(@) Li=({)(5) (18)".

e1(X1,X2) = X1(0) A X2(0) (1)
ATt(t > 0 A X1 (t) A Xa(t) (2)
AVs(0 < s <t — Xi(s) A =Xa(s)) (3)
Nis(s 2 0= (X1(5) = =Xa(s) A (Kals) = ~Xa())). ()

—

*

~

Comment:

(1): Describes: First letter is (1 ).
(2): (1) appears again at position ¢ > 0.
(3): In-between positions 0 and ¢ only ( { ) occurs.

(4): After t (1) and () alternate.
Remark: (x) cannot be replaced by
(X1(s) A Xa(5)) < (2 X1(s") A = X5(s))

Counter-example:
(1660:)
satisfies the formula because the implication at the second position always is true.
(b) Ly:=(111)"(9)".
pa(X1,Xz) = TY(Y(0) AY(0)AY(0") AVHY (1) — =Y (¢)) A-Y (")) (5)
ATs(Y (s) AVE < s(X(t) A Xa(t)) AVE > s(—= X7 (E) A Xg(t)))) (6)
Comment:

(5): Y is second order variable representing a mod 3 counter.

(6): t mod 3 =0 and: before ¢ only ( } ) and starting at ¢ only ( ) occurs.
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11 Exercise from 01-11-2006

11.1 Exercise 21

Given BUcHI automaton .A:

Example situation:

S1S-formula for A:

1
R O
) o

X 1 0 0 1 1 [X ={0,3,4,...}]
Y 1.0 0 0 0 - Yo ={0,...}]
Yi 0o 1 1 1 0 Y1 =1{1,2,3,...}]
Y» 0 0 0 0 1 [Yo={4,...}]
o(X) = 3V 3Ys[Partition(Yp, Yy, Ya) A Yy(0)
qoirmwte
AVE((Yo(t) A X (t) AY1(E)) V
(Yi(t) A=X(t) AYa(t)) v
(Ya(t) A X (t) AYa(t) V
(Ya(t) A=X (1) AY4(T)))
AVE3s(t < s A Ys(s))],

Partition(Yy, Y1,Y2) = Vt((Yo(t) vV Yi(t) V Ya(t))

11.2 Exercise 22

(a) 4 states:

A= ((Yo(t) AYL()) V (Yo(t) AYa(t) Vv (Yi(t) A Ya(1))))-

unary: binary:
Yo O Zy 0 0 1
Yi 1 ~ Zy 0 0 1
Y 0 A
Y; 0 @ 9 2 g3
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Let A= (Qa {071}7q07A7F)5 Q: {q07"'7Q7}'
For 0 <i < T: (i1,i2,43)p =1 [i =922 +i1 - 28 +ig - 2°]

), =1 Yi(t), =1 Yo(t), io =1
Yi(Yo, Y1,Y2,1) o= { ~Ya(t), iy =0 }A{ “Yi(t), i1=0 }A{ ~Yo(t), io= }

e.g.: 3(Yo, Y1, Yo, t) = =Ya(t) A Ya(t) A Yo(t) [3 = (011),]

Yi(t) A =X (t) A (), b=0 }
B0 AX(D) A (E), b1

~—

5(i,b,j)(}/b7Y17Yévt) = {
. b
1.e. q; — q] ~ 5(i,b,j)'

(X)) := 3Yp3Y13Y> [1ho(0) AVt Vo S (Yo, Y1, Yo, ) | AVEs [t <s A \/ i(s)
(gi,b,q5)€A ¢GEF

(b*)  — First idea: Characterise a position p(t) of run p not by a vector X with |@| components
but by the transposed one. Then the position of X (¢) can be calculated as t - k, thus
X(t) ~Y(t k).

01 2 345 6 7
o0 | k) |

But this of course requires a 2nd set variable!

— Better idea:

—> qo q1 > (2

corresponds to

—> o ——> 42

1. Successful run: It suffices to consider n - k states for fixed length k.
2. Flag wether we have seen at least one final state in between.

3. Mark beginning of encoding.

26



12 Exercise from 01-18-2006
12.1 [Exercise 23
S1Sp:
e Eliminate 0, <.
e Successor ' as Succ(X,Y) what especially means that X and Y are singletons.

e Eliminate FO-variables, use X C Y, Sing(X).

(a) Given ¢(X) = Jt(-X(t) — X(t')), the corresponding S1Sp-formula in prenex normal form

results in
B(X) = 373S( Succ(T, S) AT C X VS CX)).
N—_——
T,S singletons and in successor closure —p—q=pVq

Note: TCX:{t} C X =>teX.

(b) Find BUcHI automaton A for Succ(T,S) A (T C X vV S C X). Notation:

b1 ~ X
by | ~T .
b3 ~ S
1. T, S are singletons:
T:
* * * * *
O 1]...1 0 1 o 1... o1
* * * * *
—_——
not allowed, because then two positions belong to T’
S
* * * *
*
1
2. S successor of T*:
* * * *
0 0 1 0
0 0 0 1 0
N— —

Note: This formula already contains that T, S are singletons.
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3. T C X: Replace (x) by

1 0 1
1 0 or 1 0
0 1 0 1

4. = automaton for quantifier-free formula:

B¢ o ) 0
B

5. Quantifiers: ”3S5” results in a projection of transition labels onto first two components (i.e.

delete third components), for 7377 delete second components.

01 | e o1 on
+Q< >;@@

= L(Ap) = {0, 13\ {0} O

= complete automaton:

12.2 Exercise 24

Ultimately periodic word o € {0,1}%:

a = wu-v* for some u,v € {0,1}" (finite)

= U-V-V-V-V---

(a) Define BUCHI automaton A, for u = ujus ... ug:
L& uy ® Y2 . @L@@ v
1. L(A) ={a}.

2. Number of states |Qq| = |u| + |v|.

= A accepts « iff L(A) N L(A,) = L(A) N{a} #0.

Properties:

(1) The intersection of BUCHI automata is effective (there is a BUCHI automaton A’ with

L(A) = L(A) N L(Ay)).
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(2) The emptiness problem for BUCHI automata is decidable.
Reduction to a decidable problem = the original problem is also decidable.
(b) Find a tight upper bound.
— Measure for a: |u| + |v] =: n.
— Measure for A = (Q,X,q0, A, F): |Q| + |A| =: m (usual graph size).
(1) intersection: by construction of the lecture

.A/ = (Q X Qa X {17273}7“‘7A/’F,)
#=3m.|Q|

with |A'| < |A] (Q' = Q x Q4 X {1,2} also possible).
(2) emptiness: by TARJAN’s algorithm in time O(|V| + |E|) for graph (V, E). For automaton
A'=(Q,...,A’, F") in time O(|Q'| + |A])

= original problem can be solved in time

OB -n-|Ql+|A]) =O(n-m).

13 Exercise from 01-25-2006

13.1 Exercise 25
(w4 w)-word a”f:  a(0)a(l)a(2)... . 5 B(0)3(1)B(2) ...
Inf(pa) N pEQR

Emptiness decision procedure: Let A = (Q, X, ¢oA, A, F).
1. Collect all ¢ € Q with (P,q) € A’ for some P C Q. Set Q' :={qe Q|3IPCQ:(P,q) € A'}.
2. Check the BUcHI w-automaton A, = (Q, %, ¢, A, F) for emptiness Vq € Q.

3. Collect all sets P C @ such that there is ¢ € Q with (P,q) € A’ and L(A,) # (. We obtain
family F :={P C Q| 3q € Q : (P,q) € A’ N L(Ay) # 0}.

4. Check the nondeterministic MULLER automaton A" = (Q, X, go, A, F) for emptiness.

Claim: L(A) £ 0 & L(A) £0.

Proof: 7<=”: Let a € L(A’) be an accepting run of A" on «, in particular: Inf(p,) € F.
By definition exists ¢ € @ such that (Inf(p,),q) € A" and L(A,) # 0.

Let g € L(A,) and pg be an accepting run of A, on f.

= Inf(ps) N F # 0, p3(0) = q.
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= (pa, ps) is an accepting run of A4 on a”f.
”=": Analogously: (pa,p3) on a”f = ... O

Remark: Emptiness-check for nondeterministic MULLER automata:
e Ist way: nondeterministic MULLER automaton — nondeterministic BUCHI automaton.

1. BUcHI automaton guesses F' € F.
2. BUCHI automaton guesses the position from which on only F-states.

3. Ensures that all F-states are visited and no other state.
e 2nd way: direct procedure.

1. Remove non-reachable states and remove F' € F that contains non-reachable state.
2. For each F' € F: Restrict A on F. Check if new Ap is strongly connected.

3. Yes, if Ay is strongly connected for some F' € F.
No, if Ay is not strongly connected for all F' € F.

13.2 Exercise 26

To obtain the desired form of ¢(X) we consider two possible ways.
o Ist way:

1. Translate o(X) into equivalent BUCHI automaton .A.
2. Find complement automaton A with L(A) = {0,1}* \ L(A).
3. Find S1S-formula $(X) equivalent to A of the form 3Y7 ... 3V, (Y1, ..., Y, X) (standard

construction).

Claim: —(X) is the desired formula.

Proof:

— —B(X) =Y. VYV, .., Y, X) with (Y4, ..., Yy, X) = =0(Y1, ..., Y, X).
—ae{0,1}¥ ak-3(X) © not a = B(X) < not a € L(A) & ac L(A) & a = o(X).

So
—@(X) =¢(X) over w words.

e 2nd way: Use the hint.

1. As above.

2. Transform BUCHI automaton A into equivalent deterministic MULLER automaton A’.

(MCNAUGHTON or MULLER-SHUPP construction)
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3. Find S1S-formula ¢'(X) equivalent to A’ of the denied form.
MULLER automaton A" = (Q,{0,1},¢1,6,F), Q = {q1,...,qn}

(X)) = VY...VY, <Partition(Y1, LY AY1(0)

AN (Tilt) A =X (1) = Yag,.0)(E)) A (Yi0) A X (1) = Vi) (t))

AVt
=1
=V | \3tvimn N\ -3t )
FeF \q€EF 4 &F

whereat 3°°t x(t) = Vs3t(s < t A x(t)).

14 Exercise from 02-01-2006

14.1 Exercise 27

(p-expansion up to position 10:

P 000010071111

P2 00100101111

—p1 11110110000

P1 A D2 00000O0ODO0T1T1T11
—p1U(p1 A p2) 00000111111
Xpo 01001011111

X Xpy 10010111111

(P2 N X Xp2) 00000101111
(-prUp1 Ap2))U(pa AXXpe)|O 0 0 001 1 1 1 11

Hints:
e Sort subformulas by increasing complexity.

e If the right site of an until-formula is true at a position the formula itself directly is true. So the

first step to evaluate the until-formula would be copying all 1s of the right-site-formula.

14.2 Exercise 28

(a) Two interpretations:

1. 74 holds sometime”

PN = (=)U (Y A p)
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2. 7if ¢ holds at all then also ¢”
eNtp = GV (=)U(Y A )
The operator N is not fixed because of the different possible interpretations.

(b) Two interpretations:

1. 7¢ and v from now on until the next —¢”

| | |
I I I

Y Ap —1) or YAp
Wi =WAp)U() vV G A o)
2. 7always if ¢ then ¢”
CYAe ), 0 YA

Wi =Gy — ¢)

(¢) Interpretation:

| SXO | |
T 7
pBY = (U@ AW AXFY) v G-y

14.3 Exercise 29

A: (Q,E,QO,A,F), A g Q X 2 X Q
A: # =28 =512, FCQ: #=4 = about 2000 possible automata to consider!
Problem: All w-words with suffix (1) belong to L(¢). Solution in three steps:

1. There is a BUCHI automaton A with three states with the interpretations

go: no current request,
q1: wait for response,

q2: response and new request

D1 ~ request
P2 ~ response

for the transition labels. Form of the automaton:

for the states and
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2. Claim: There is no BUCHI automaton with less than three states.

(a) Since L(p) # () = each BUCHI automaton needs at least one final state gq.

(b) Assume that there is a BUCHI automaton A with one final state such that L(p) = L(A).

w

e (3)¥ € L(A): Let p be an accepting run of A on (J)*.

o ()¥ € L(A): Let p’ be an accepting run of A on (})“.

=

e p visits ¢ infinitely often. Let m with p(m) = q.

e / visits ¢ infinitely often. Let m/ > 0 with p/(m/) = q.

1 1 1 1
g o) D g D g 0
pr o0 &y Oy Oy B

Consider new (red colored) run p. p is accepting run on (%)m, (9)* ¢ L(y). Contradiction.

3. Assume BUCHI automaton A = ({qo,q1},...), L(A) = L(p).
= ¢y, ¢1 must be final, gy is the initial state.

@ (®)

€ q1
U
(1) (%) () (+)

(¥): Transition not possible because () (9)“ € L(p).
(#x): Transition not possible because (}) (3) (9)* € L(p).
But the resulting automaton also doesn’t recognize L(y) because (§)* ¢ L(p). So the contra-

diction is complete.
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