Mitschrift

Automata on Infinite Words - Exercises

Dr. S. Wöhrle Dipl.-Math. Philipp Rohde*

Ulrich Loup

Diese Mitschrift ist eine Mitschrift und deswegen nicht unbedingt vollständig oder fehlerfrei! Das Dokument wird bis zum Ende des Semesters sukzessive erweitert. Anmerkungen bitte an die angegebene email-Adresse auf der s-inf Seite.

*: Ab dem 11.01.2006 wurde die Übung von Philipp Rhode übernommen.

Contents

1	$\mathbf{E}\mathbf{x}\mathbf{\epsilon}$	ercise from 10-19-2005	4
	1.1	Semantics of regular expressions	4
	1.2	Definition (ω -regular language)	4
	1.3	Connection to Büchi automata	4
	1.4	Example	5
2	Exe	ercise from 10-26-2005	5
	2.1	Equivalence relation $\sim_{\mathfrak{A}}$	5
	2.2	Transition profiles	5
	2.3	Computing the equivalence classes as sets	5
3	Exe	ercise from 11-02-2005	6
	3.1	Exercise 1	6
	3.2	Exercise 2	7
	3.3	Exercise 3	7
4	Exe	ercise from 11-09-2005	7
	4.1	Exercise 4	7
	4.2	Exercise 5	8

5	Exercise from 11-16-2005									
	5.1	Exercise 6	11							
	5.2	Exercise 7	11							
	5.3	Exercise 8	11							
6	Exe	ercise from 11-23-2005	13							
	6.1	Exercise 9	13							
	6.2	Exercise 10	13							
	6.3	Exercise 11	13							
7	Exe	ercise from 11-30-2005	15							
	7.1	Exercise 12	15							
	7.2	Exercise 13	15							
8	Exe	ercise from 12-07-2005	16							
	8.1	Exercise 14	16							
	8.2	Exercise 15	18							
	8.3	Exercise 16	18							
9	Exe	ercise from 12-14-2005	18							
	9.1	Example: S1S definable property	18							
	9.2	Exercise 17	19							
	9.3	Exercise 18	19							
10	Exe	ercise from 12-21-2005	23							
	10.1	Exercise 19	23							
	10.2	Exercise 20	24							
11	Exe	ercise from 01-11-2006	25							
	11.1	Exercise 21	25							
		Exercise 22	25							
12	Exe	ercise from 01-18-2006	27							
		Exercise 23	27							
		Exercise 24	28							
13	Exe	ercise from 01-25-2006	29							
		Exercise 25	29							
	13.2	Exercise 26	30							

14 Exercise from 02-01-2006							
14.1 Exercise 27	31						
14.2 Exercise 28	31						
14.3 Exercise 29	32						

1 Exercise from 10-19-2005

1.1 Semantics of regular expressions

$$\llbracket \varepsilon \rrbracket := \{ \varepsilon \}, \, \llbracket \emptyset \rrbracket := \emptyset, \, \llbracket a \rrbracket := \{ a \} \quad \forall a \in \Sigma$$

If r, s are regular expressions then

- $\bullet \ \llbracket r+s \rrbracket := \llbracket r \rrbracket \cup \llbracket s \rrbracket$
- $\bullet \ \llbracket r \cdot s \rrbracket := \{uv \in \Sigma^* \mid u \in \llbracket r \rrbracket, v \in \llbracket s \rrbracket \}$
- $\llbracket r^* \rrbracket := \{ w \in \Sigma^* \mid \exists n \in \mathbb{N} : w = u_1 \dots u_n \text{ and } u_i \in \llbracket r \rrbracket \ \forall i \leq n \}$

Note: We often do distinguish syntax and semantics! E.g. we often write $U \cdot V$, $r \cup s$, $r \cdot U$.

1.2 Definition (ω -regular language)

An ω -regular language over Σ is of the form $r_1 \cdot s_1^{\omega} + \cdots + r_n \cdot s_n^{\omega}$ for some $n \in \mathbb{N}$ and regular expressions r_i, s_i for all $i \leq n$.

semantics: extend semantics of regular expressions by

- $\llbracket r^{\omega} \rrbracket := \{ \alpha \in \Sigma^{\omega} \mid \alpha = w_1 w_2 \dots, w_i \in \llbracket r \rrbracket \ \forall i \in \mathbb{N} \}$
- $\bullet \ \llbracket r \cdot s^{\omega} \rrbracket := \{ \alpha \in \Sigma^{\omega} \mid \alpha = w\beta, \ w \in \llbracket r \rrbracket, \beta \in \llbracket s^{\omega} \rrbracket \}$
- $\bullet \ r_1 s^\omega + \dots + r_n s^\omega := \bigcup_{i \le n} \llbracket r_i s_i^\omega \rrbracket$

Note:

- $(s^{\omega})^{\omega}$, $s\omega \cdot r$, $s^{\omega} \cdot r^{\omega}$, $r \cdot (s_1^{\omega} + s_2^{\omega})$ are not ω -regular expressions!
- $\bullet \ \|\varepsilon^\omega\| = \emptyset$

1.3 Connection to Büchi automata

Recall: Given a BÜCHI automaton $\mathfrak{A} = (Q, \Sigma, q_0, \Delta, F)$. The language $L(\mathfrak{A})$ can be described by the ω -regular expression

$$\bigcup_{q \in F} W_{q_0 q} W q_q^{\ \omega}$$

where W_{qq} is the regular language recognized by the automaton $\mathfrak{A}_{p,q}=(Q,\Sigma,p,\Delta,\{q\})$. From \mathfrak{A} (by Kleene's theorem) we can construct r_{pq} such that $[\![r_{pq}]\!]=L(\mathfrak{A}_{pq})$.

1.4 Example

Thus
$$L(\mathfrak{A}) = (a+b)^* a(a^*)^{\omega} + (a+b)^* ab(ab)^* ((ab)^*)^{\omega} = (a+b)^* a^{\omega} + (a+b)^* (ab)^{\omega}$$
.

2 Exercise from 10-26-2005

Büchi's complementation procedure

$$\mathfrak{A}:$$

$$\underbrace{^{a,b}}_{1} \underbrace{^{a}}_{2} \underbrace{^{a}}_{2}$$
 recognizes $L(\mathfrak{A}) = (a+b)^* a^{\omega}$.

2.1 Equivalence relation $\sim_{\mathfrak{A}}$

$$\forall p, q \in Q \ ((p \xrightarrow{u} q \Leftrightarrow p \xrightarrow{v} q) \land (p \xrightarrow{u} q \Leftrightarrow p \xrightarrow{v} q)) =: u \sim_{\mathfrak{A}} v.$$

Lemma: $\sim_{\mathfrak{A}}$ is even a conguence, i.e. $\forall u, v \in \Sigma^* \ \forall a \in \Sigma \ u \sim_{\mathfrak{A}} v \to ua \sim_{\mathfrak{A}} va$.

Consequence: $\forall u, v \in \Sigma^* \ \forall a \in \Sigma \ [u] = [v] \Rightarrow [ua] = [va].$

2.2 Transition profiles

	$[\varepsilon]$	[a]	[b]	[aa]	[ab]	[ba]	[bb]	[baa]	[bab]
a,b a	$1 \rightarrow 1$								
$\mathfrak{A}: \frac{1}{a}$	$2 \Rightarrow 2$	$1 \Rightarrow 2$							
		$2 \Rightarrow 2$		$2 \Rightarrow 2$					
				= [a]	=[b]		=[b]	=[ba]	=[b]

5

 $[\varepsilon]$, [a], [b], [ba] are all equivalence classes. Proof: Use Congruence Lemma.

2.3 Computing the equivalence classes as sets

 $\textit{Recall: } W_{p,q} := \{u \mid \mathfrak{A} : p \xrightarrow{u} q\} \quad \text{and} \quad W_{p,q}^F := \{u \mid \mathfrak{A} : p \xrightarrow{u} q\}.$

Fact: (from the definition of $\sim_{\mathfrak{A}}$)

[u] = the intersection of

- all $W_{p,q}$ with $p \stackrel{u}{\rightarrow} q$, all $W_{p,q}^F$ with $p \stackrel{u}{\Rightarrow} q$
- all $\Sigma^* \setminus W_{p,q}$ with not $p \stackrel{u}{\to} q$, all $\Sigma^* \setminus W_{p,q}^F$ with not $p \stackrel{u}{\Rightarrow} q$

$$\mathfrak{A}: \xrightarrow{a,b} \underbrace{ W_{1,1} = (a+b)^* = \Sigma^* \quad W_{1,1}^F = \emptyset }_{W_{1,2} = \emptyset} \\ W_{1,2} = \emptyset \qquad W_{1,2}^F = (\mathbf{a}+\mathbf{b})^*\mathbf{a}^+ \qquad \Sigma^* \setminus \mathbf{W}_{1,2}^F = (\mathbf{a}^*\mathbf{b})^* \\ W_{2,2} = \emptyset \qquad W_{2,2}^F = \mathbf{a}^* \qquad \Sigma^* \setminus \mathbf{W}_{2,2}^F = \mathbf{a}^*\mathbf{b}(\mathbf{a}+\mathbf{b})^* \\ [\varepsilon] \qquad = \Sigma^* \setminus W_{1,2}^F \cap W_{2,2}^F = (a^*b)^* \cap a^* = \varepsilon \\ [a] \qquad = W_{1,2}^F \cap W_{2,2}^F = (a+b)^*a^+ \cap a^* = a^+ \\ [b] \qquad = \Sigma^* \setminus W_{1,2}^F \cap \Sigma^* \setminus W_{2,2}^F = (a^*b)^* \cap a^*b(a+b)^* = (a^*b)^+ \\ [ba] \qquad = W_{1,2}^F \cap \Sigma^* \setminus W_{2,2}^F = (a+b)^*a^+ \cap a^*b(a+b)^* = a^*b(a+b)^*a^+ \\ [ba] \qquad = W_{1,2}^F \cap \Sigma^* \setminus W_{2,2}^F = (a+b)^*a^+ \cap a^*b(a+b)^* = a^*b(a+b)^*a^+ \\ [ba] \qquad = W_{1,2}^F \cap \Sigma^* \setminus W_{2,2}^F = (a+b)^*a^+ \cap a^*b(a+b)^* = a^*b(a+b)^*a^+ \\ [ba] \qquad = W_{1,2}^F \cap \Sigma^* \setminus W_{2,2}^F = (a+b)^*a^+ \cap a^*b(a+b)^* = a^*b(a+b)^*a^+ \\ [ba] \qquad = W_{1,2}^F \cap \Sigma^* \setminus W_{2,2}^F = (a+b)^*a^+ \cap a^*b(a+b)^* = a^*b(a+b)^*a^+ \\ [ba] \qquad = W_{1,2}^F \cap \Sigma^* \setminus W_{2,2}^F = (a+b)^*a^+ \cap a^*b(a+b)^* = a^*b(a+b)^*a^+ \\ [ba] \qquad = W_{1,2}^F \cap \Sigma^* \setminus W_{2,2}^F = (a+b)^*a^+ \cap a^*b(a+b)^* = a^*b(a+b)^*a^+ \\ [ba] \qquad = W_{1,2}^F \cap \Sigma^* \setminus W_{2,2}^F = (a+b)^*a^+ \cap a^*b(a+b)^* = a^*b(a+b)^*a^+ \\ [ba] \qquad = W_{1,2}^F \cap \Sigma^* \setminus W_{2,2}^F = (a+b)^*a^+ \cap a^*b(a+b)^* = a^*b(a+b)^*a^+ \\ [ba] \qquad = W_{1,2}^F \cap \Sigma^* \setminus W_{2,2}^F = (a+b)^*a^+ \cap a^*b(a+b)^* = a^*b(a+b)^*a^+ \\ [ba] \qquad = W_{1,2}^F \cap \Sigma^* \setminus W_{2,2}^F = (a+b)^*a^+ \cap a^*b(a+b)^* = a^*b(a+b)^*a^+ \\ [ba] \qquad = W_{1,2}^F \cap \Sigma^* \setminus W_{2,2}^F = (a+b)^*a^+ \cap a^*b(a+b)^* = a^*b(a+b)^*a^+ \\ [ba] \qquad = W_{1,2}^F \cap \Sigma^* \setminus W_{2,2}^F = (a+b)^*a^+ \cap a^*b(a+b)^* = a^*b(a+b)^*a^+ \\ [ba] \qquad = W_{1,2}^F \cap W_{2,2}^F \cap W_{2,2}^F = (a+b)^*a^+ \cap a^*b(a+b)^* = a^*b(a+b)^*a^+ \\ [ba] \qquad = W_{1,2}^F \cap W_{2,2}^F \cap W_{2,2}^F$$

equivalence classes:

$$[\varepsilon] = \varepsilon$$

$$[a] = a^{+}$$

$$[b] = (a^{*}b)^{+}$$

$$[ba] = a^{*}b(a+b)^{*}a^{+}$$

 $W_{\mathfrak{A}} = \{ [\varepsilon], [a], [b], [ba] \} \text{ and } \Sigma^* = [\varepsilon] \dot{\cup} [a] \dot{\cup} [b] \dot{\cup} [ba].$

Task: Compute U, V such that $U \cdot V^{\omega} \nsubseteq L(\mathfrak{A}) = (a+b)^* a^{\omega}$. Therefore $V = [\varepsilon]$ or V = [a] is not allowed. All other combinations contain $\alpha \notin L(\mathfrak{A})$.

Hence:

$$\Sigma^{\omega} \setminus L(\mathfrak{A}) = (a^*b)^{\omega} + (a^*b(a+b)^*a^+)^{\omega}$$

$$+a^+(a*b)^{\omega} + a^+(a^*b(a+b)^*a^+)^{\omega}$$

$$+(a^*b)^{\omega} + (a^*b)^+(a^*b(a+b)^*a^+)^{\omega}$$

$$+(a^*b(a+b)^*a^+)(a^*b)^{\omega} + (a^*b(a+b)^*a^+)^{\omega}$$

$$= (a^*b)^{\omega}$$

3 Exercise from 11-02-2005

3.1 Exercise 1

(a)
$$q_0 \xrightarrow{a} q_1 \xrightarrow{a} q_2$$

$$q_0 \xrightarrow{a} q_1 \xrightarrow{a} q_1$$
(b) $q_0 \xrightarrow{a} q_1$

(c) Idea: rewrite L_3 into "from some point onwards: after every a either b or c" (such that L_3 characterizes a Büchi automaton).

$$\underbrace{q_0}_{a,b,c}\underbrace{q_1}_{b,c}\underbrace{q_1}_{b,c}\underbrace{q_2}_{a}$$

3.2 Exercise 2

(a)
$$(a+b+c)^*aa(a+b+c)^{\omega}$$

(b)
$$((a+b+c)^*aa)^{\omega}$$

(c)
$$(a+b+c+aa)^*((b+c)+a(b+c))^{\omega}$$

3.3 Exercise 3

There exists a function $b: \mathbb{N} \to \mathbb{N}$ such that

- (i) \forall BÜCHI automata \mathcal{A} with n states with $L := L(\mathcal{A}) \neq \emptyset \ \exists w \in \Sigma^*$ with $w = uv, uv^{\omega} \in L$ and $|u| + |v| \leq b(n)$.
- (ii) \exists a BÜCHI automaton \mathcal{A} with n states such that $\nexists w \in L := L(\mathcal{A})$ with $w = uv^{\omega}$ and |u| + |v| < b(n).

Proof: Set b(n) := n.

Since $L(\mathcal{A}) \neq \emptyset$ there exists a loop in the graph of \mathcal{A} such that

- it contains a state $q_1 \in F$
- it is reachable from initial state q_0

$$\longrightarrow q_0 \sim_{\widetilde{u}} q_1$$

Define u, v, we know $uv^{\omega} \in L(\mathcal{A})$ where we choose u to be as short as possible, i.e. |u| := m < n. The path $q_0 \sim_{u} q$ does not contain a state from loop (except the last one). So only n - m states remain for loop.

The bound b(n) = n cannot be improved:

Consider the family of BÜCHI automata $(A_n)_{n\in\mathbb{N}}$.

$$A_n: \longrightarrow q_0 \xrightarrow{a} q_1 \xrightarrow{a} \cdots \xrightarrow{a} q_{n-1}$$

 $L(\mathcal{A}_n) = a^{n-1}b^{\omega}$. Obviously $a^{n-1}b^{\omega}$ cannot be decomposed in u, v with |u| + |v| < n and $uv^{\omega} = a^{n-1}b^{\omega}$.

7

4 Exercise from 11-09-2005

4.1 Exercise 4

$$\Sigma = \{a, b, c\}.$$

• $L := \{ \alpha \in \Sigma^{\omega} \mid \alpha \text{ contains at least one infix } ab \text{ and one infix } ac \}.$ Automaton:

 ω -regular expression: $(a+b+c)^*a^*(b(a+b+c)^*ac+c(a+b+c)^*ab)(a+b+c)^\omega$

• $K := \{ \alpha \in \Sigma^{\omega} \mid \text{if } \alpha \text{ contains infinitely many } a \text{ then } \alpha \text{ contains infinitely many } b \}.$ Automaton:

 $\omega\text{-regular expression: }(a+b+c)^*(a+b+c)(b+c)^\omega + (a+b+c)^*b(b^*+b^*(a+c)(a+b+c)^*b(\omega)^\omega + (a+b+c)^*b(b^*+b^*(a+c)(a+b+c)^*b(\omega)^\omega + (a+b+c)^*b(b^*+b^*(a+c)(a+b+c)^*b(\omega)^\omega + (a+b+c)^*b(\omega)^\omega + (a+b+c)^*b(\omega)^\omega$

4.2 Exercise 5

- (a) ω -regular expression: $(a+b)^*a(a+ba)^{\omega}$, $L(\mathcal{A}) = \{\alpha \in \Sigma^{\omega} \mid \alpha \text{ contains finitely often the infix } bb\}.$
- (b) $\sim_{\mathcal{A}}$ -class: shortest representatives and transition profiles

Transition profiles of $u \in \Sigma^*$:

$$u \sim_{\mathcal{A}} v \Leftrightarrow (\forall p,q: (p \xrightarrow{u} q \Leftrightarrow p \xrightarrow{v} q) \land (p \xrightarrow{u} q \Leftrightarrow p \xrightarrow{v} q))$$

 $\sim_{\mathcal{A}}$ is a congruence (not only right-congruence): If $u \sim_{\mathcal{A}} v$, then $\forall w_1, w_2 \in \Sigma^*$: $w_1 u w_2 \sim_{\mathcal{A}} w_1 v w_2$.

Consequence: $u \sim_{\mathcal{A}} v$ and |v| < |u|, then every word that has u as prefix is equivalent to some word that doesn't have u as prefix and is shorter than the first word. $uw \sim_{\mathcal{A}} vw = ux \sim_{\mathcal{A}} vx$. transition profiles:

[arepsilon]	[a]	[b]	[aa]	[ab]	[ba]	[bb]	[aba]	[abb]	[baa]	[bab]
$1 \rightarrow 1$										
$2 \Rightarrow 2$	$1 \Rightarrow 2$	$2 \Rightarrow 3$	$1 \Rightarrow 2$	$1 \Rightarrow 3$	$1 \Rightarrow 2$		$1 \Rightarrow 2$		$1 \Rightarrow 2$	$1 \Rightarrow 3$
$3 \Rightarrow 3$	$2 \Rightarrow 2$		$2 \Rightarrow 2$	$2 \Rightarrow 3$	$2 \Rightarrow 2$		$2 \Rightarrow 2$		$2 \Rightarrow 2$	$2 \Rightarrow 3$
	$3 \Rightarrow 2$		$3 \Rightarrow 2$				$3 \Rightarrow 2$			
			= [a]				= [a]	=[bb]	= [ba]	

[bba]	[bbb]	[baba]	[babb]	[bbaa]	[bbaba]	[bbabb]
$1 \rightarrow 1$						
$1 \Rightarrow 2$		$1 \Rightarrow 2$		$1 \Rightarrow 3$	$1 \Rightarrow 2$	
		$2 \Rightarrow 2$				
	=[bb]	=[ba]	=[bb]		=[bba]	=[bb]

e.g. verify $aa \sim a \Rightarrow baa \sim ba$.

- (c) Each $\alpha \in \Sigma^{\omega}$ can be factorized as $\alpha \in U \cdot V^{\omega}$ with U and V equivalence classes of $\sim_{\mathcal{A}}$.
 - $-\alpha_1 = ababbabbbabbbba \dots$ Since $bbb \sim_{\mathcal{A}} bb$ we get $a\underbrace{b \dots b}_{n \geq 2} \sim_{\mathcal{A}} bb$. Thus $\alpha_1 \in [ab] \cdot [bb]^{\omega}$.

 $-\alpha_2 = abaabaaabaaaa...$ Since $aa \sim_{\mathcal{A}} a$ we get $b\underbrace{a\ldots a}_{n\geq 2} \sim_{\mathcal{A}} ba$. So $\alpha_2 \in [a] \cdot [ba]^{\omega}$. Alternative: $\alpha_2 \in [\varepsilon] \cdot [a]^{\omega}$.

(d) direct construction:

 $\Sigma^{\omega} \setminus L(\mathcal{A}) = \{ \alpha \in \Sigma^{\omega} \mid \alpha \text{ contains infinitely many } bb \}.$

5 Exercise from 11-16-2005

5.1 Exercise 6

UP defines the class of ultimately periodic words.

<u>Claim:</u> UP is not regular.

Assume that UP is regular, then $\Sigma^{\omega}\setminus$ UP is also regular. But any regular language contains an ultimately periodic word. Contradiction.

5.2 Exercise 7

(a)

Remark: Muller automata: $\mathcal{F} \subseteq 1^Q$. Run ρ is accepting : \Leftrightarrow Inf $(\rho) \in \mathcal{F}$.

(b)

$$\mathcal{F} = \{ \{q_c\}, \{q_b\}, \{q_b, q_c\}, \{q_a\}, \{q_a, q_c\} \}.$$

(Exclude $\{q_a, q_b\}, \{q_a, q_b, q_c\}$, the rest must work.)

 $\{q_c\}$: neither a nor b was seen.

 $\{q_b\}, \{q_b, q_c\}: b \text{ was } \infty\text{-often but } a \text{ finitely often seen.}$

 $\{q_a\}, \{q_a, q_c\}: a \text{ was } \infty\text{-often but } b \text{ finitely often seen.}$

5.3 Exercise 8

(a) Let $U \subseteq \Sigma^*$, U finite, $L = U \cdot \Sigma^{\omega}$.

 $\underline{\text{Claim:}}\ L$ is E- and A-recognizable.

<u>Proof:</u> W.l.o.g. (without loss of generality) assume that U contains only max. elements w.r.t. (with respect to) \sqsubseteq -relation (prefix-relation).

 $w \in U, w' \sqsubseteq w, w \neq w' \Rightarrow w' \notin U.$

Define $T := \{ w' \sqsubseteq w \mid w \in U, w' \in \Sigma^* \}, E_a := \{ (w, wa) \mid wa \in T \}.$

Example: $U = \{aab, abb, b\}$

E-automaton $\mathfrak{A}: L(\mathfrak{A}) = L$ A-automaton: all final states (dashed)

new sink-state S

(b) Let L be E- and A-recognizable.

complement-lemma: $\Sigma^{\omega} \setminus L$ is E-recognizable. [swapping final/non-final states]

There is an E-automaton \mathfrak{A} with $L(\mathfrak{A}) = L$.

There is an A-automaton \mathfrak{A}' with $L(\mathfrak{A}') = L$

To contradiction: Assume there is no finite $U \subseteq \Sigma^*$ with $L = U \cdot \Sigma^{\omega}$.

Let $T := \{ w \in \Sigma^* \mid \exists \alpha, \beta \in \Sigma^* : w\alpha \in L \land w\beta \notin L \}$

 $\Rightarrow T$ is prefix-closed and with E_a as before: T is a tree. Assume that T is finite.

For any leaf of T, w and any $a \in \Sigma$

- * either $\forall \alpha \in \Sigma^{\omega} : wa\alpha \in L$
- * or $\forall \alpha \in \Sigma^{\omega} : wa\alpha \notin L$.

Define $U := \{ wa \in \Sigma^* \mid w \in T, w \text{ is a leaf, } a \in \Sigma, \forall \alpha \in \Sigma^\omega : wa\alpha \in L \}.$

Assume that T is finite. Σ is finite $\Rightarrow U$ is finite and $L = U \cdot \Sigma^{\omega}$. Contradiction to T is finite. $\Rightarrow T$ is finite.

Tree T infinite and finitely branching $(|\Sigma| < \infty)$.

König's lemma \Rightarrow there is an infinite path in T, i.e there is $u\Sigma^{\omega}$ such that each finite prefix of u belongs to T.

Does \mathfrak{A} accept u? If \mathfrak{A} accepts $u \Rightarrow$ assumes final state after u_1, \ldots, u_m (finitely many) $\beta \notin L$.

But $L = L(\mathfrak{A})$. So the answer is NO! $\Rightarrow u \notin L$ Analog.: \mathfrak{A}' cannot accept $u. \Rightarrow u \notin \Sigma^{\omega} \setminus L \Rightarrow u \in L$ Contradiction!

6 Exercise from 11-23-2005

6.1 Exercise 9

 $U, V \subseteq \Sigma^*, U^{\omega} := \{ \alpha \in \Sigma^{\omega} \mid \alpha = u_1 u_2 u_3 \dots, u_i \in U \}.$ $\lim(U) := \{ \alpha \in \Sigma^{\omega} \mid \forall i \; \exists j \; \text{with} \; j \geq i : \alpha[0 \dots j] \in U \}$ $U^+ := \{ v \in \Sigma^* \mid \exists k \geq 1, v = u_1 \dots u_k, u_j \in U \}$

- (a) $U^{\omega} = \lim(U^{+})$? Answer: NO.
 - $-U^{\omega} \subseteq \lim(U^{+})$: Let $\alpha \in U^{\omega}$, then $\alpha = u_{1}u_{2}u_{3}...$ with $u_{i} \in U$, thus $u_{1}, u_{1}u_{2}, u_{1}u_{2}u_{3},... \in U^{+}$. Thus $\forall i \exists j$ such that $\alpha[0...j] \in U^{+}$ (choose j such that $j = |u_{1}...u_{l}| \geq i$). $\Rightarrow \alpha \in \lim(U^{+}) \Rightarrow U^{\omega} \subseteq \lim(U^{+})$.

- $\lim(U^+) \nsubseteq U^\omega$: Choose $U = ba^*$. Choose $\alpha = ba^\omega \in \lim(U) \subseteq \lim(U^+)$. By definition of U^ω every word in $(ba^*)^\omega$ will contain infinitely many $b. \Rightarrow \alpha \notin U^\omega$.
- (b) $\lim(U \cup V) = \lim(U) \cup \lim(V).$ Answer: YES.

"\(\to\$": Let $\alpha \in \lim(U) \cup \lim(V)$, w.l.o.g. $\alpha \in \lim(U)$. $\Rightarrow \alpha \in \lim(U \cup V)$.

" \subseteq ": Let $\alpha \in \lim(U \cup V)$. Then $\forall i \; \exists j \; \text{such that} \; \alpha[0 \dots j] \in U \; \text{or} \; \alpha[0 \dots j] \in V$.

Let $N_U := \{j \mid \alpha[0 \dots j] \in U\}$ and $N_V := \{j \mid \alpha[0 \dots j] \in U\}$. At least one of the two sets has to be infinite. \Rightarrow Either $\alpha \in \lim(U)$ or $\alpha \in \lim(V)$.

6.2 Exercise 10

Every deterministically co-BÜCHI recognizable language is also deterministically MULLER recognizable. Proof: Let $\mathcal{A} = (Q, \Sigma, q_0, \delta, F)$ be a deterministic co-BÜCHI automaton. \mathcal{A} accepts $\alpha \in \Sigma^{\omega}$ if $\exists i$ such that $\forall j \geq i$ we have $\rho_{\alpha}(j) \in F$, i.e $\mathrm{Inf}(\rho_{\alpha}) \subseteq F$.

Choose $\mathcal{B} = (Q, \Sigma, q_0, \delta, \mathcal{F})$ where $\mathcal{F} = 2^F = \{A \mid A \subseteq F\}$. Then

$$\alpha \in L(\mathcal{B}) \Leftrightarrow \operatorname{Inf}(\rho_{\alpha}) \in \mathcal{F} \Leftrightarrow \operatorname{Inf}(\rho_{\alpha}) \subseteq F \Leftrightarrow \alpha \in L(\mathcal{A})$$

6.3 Exercise 11

 $L := \{ \alpha \in \{0,1\}^{\omega} \mid \alpha \text{ contains infix } 00 \text{ infinitely often, but infix } 11 \text{ only finitely often} \}.$ Show in 3 steps:

(a) A deterministic MULLER automaton for L (intuitively):

$$\mathcal{F} = \{ F \subseteq Q \mid 5 \in F, 3 \notin F \}$$
 equivalent:
$$\mathcal{F} = \{ \{5\}, \{2,4,5\} \}$$

$$\mathcal{F} = \{\{5\}, \{2, 4, 5\}\}$$

(b) L is not BÜCHI recognizable.

Proof: Assume it is, e.g. by A.

Consider $\alpha_1 = 110^{\omega} \in L$, on $\alpha_1 \mathcal{A}$ enters a final state, e.g. for the first time after 110^{n_1} .

Consider $\alpha_2 = 110^{n_1}110^{\omega} \in L$, \mathcal{A} enters a second final state, e.g. after $110^{n_1}110^{n_2}$.

Consider $\alpha_2 = 110^{n_1} 110^{n_2} 110^{\omega} \in L, \dots$

We obtain an infinite sequence of ω -words $\alpha_1, \alpha_2, \ldots \in L$, the runs of \mathcal{A} on the initial parts agree. Thus α forming the common extension of $(\alpha_i)_i$ the automaton \mathcal{A} will enter a final state infinitely often, but α contains 11 infinitely often. Contradiction.

(b) L is not deterministically co-Büchi recognizable.

Assume it is, e.g. by A with n states.

Let
$$\alpha = (00(01)^{n+1})^{\omega} \in L$$
.

From some point onwards \mathcal{A} only enters final states on α , e.g. after reading $(00(01)^{n+1})^m$, so on $(00(01)^{n+1})^m (00(01)^{n+1}).$

only states
$$\in F$$

 $\Rightarrow \alpha' = (00(01)^{n+1})^m 00(01)^{\omega}$ is accepted by \mathcal{A} , but $\alpha' \notin L$. Contradiction.

7 Exercise from 11-30-2005

7.1 Exercise 12

(a) Every nondeterministically E-recognizable language is also nondeterministically STAIGNER-WAGNER recognizable.

Proof: Let $\mathcal{A} = (Q, \Sigma, q_0, \Delta, F)$ be E-automaton. Construct $\mathcal{B} = (Q', \Sigma, q'_0, \Delta', \mathcal{F})$ a STAIGNER-WAGNER automaton by choosing Q' := Q, $q'_0 := q_0$, $\Delta := \Delta'$, $\mathcal{F} := \{F' \subseteq Q \mid F' \cap F \neq \emptyset\}$.

Then $\forall \alpha \in \Sigma^{\omega}$: \mathcal{A} E-accepts α

 \Leftrightarrow there exists an infinite run ρ_{α} of \mathcal{A} on α such that a state from F is visited

$$\Leftrightarrow \operatorname{Occ}(\rho) \cap F \neq \emptyset$$

$$\Leftrightarrow \operatorname{Occ}(\rho_{\alpha}) \in \mathcal{F} \Leftrightarrow \mathcal{B} \text{ accepts } \alpha.$$

(b) Every nondeterministically Staigner-Wagner recognizable language is also nondeterministically co-Büchi recognizable.

Proof: Let $\mathcal{A} = (Q, \Sigma, q_0, \Delta, \mathcal{F})$ be Staigner-Wagner automaton. Construct co-Büchi automaton $\mathcal{B} = (Q', \Sigma, q'_0 \Delta', F')$ as follows:

$$Q' := Q \times 2^Q, \quad q'_0 := (q_0, \emptyset).$$

 Δ' given $((p, P), a, (q, R)) \in \Delta' \Leftrightarrow (p, a, q) \in \Delta$ and $R = P \cup \{p\} \ \forall p, q \in Q \ \forall a \in \Sigma \ \forall R, P \in 2^Q$. $F' = \{(p, F) \mid F \in \mathcal{F}\}.$

Then for $\alpha \in \Sigma^{\omega}$: \mathcal{A} STAIGNER-WAGNER accepts α

- $\Leftrightarrow \exists$ infinite run ρ_{α} of \mathcal{A} on α such that $Occ(\rho_{\alpha}) \in \mathcal{F}$.
- $\Leftrightarrow \exists$ infinite run ρ'_{α} of \mathcal{B} on α such that from some point onwards only states (*, P) for some $P \in \mathcal{F}$ are visited.

$$\Leftrightarrow \mathcal{B}$$
 co-Büchi accepts α .

(c) Every nondeterministically co-Büchi recognizable language is also nondeterministically E-recognizable.

Proof: Let $\mathcal{A} = (Q, \Sigma, q_0, \Delta, F)$ be a nondeterministic co-BÜCHI automaton. We construct $\mathcal{B} = (Q', \Sigma, q'_0, \Delta', F')$ E-automaton as follows.

$$Q' := Q \cup (\{1\} \times F), \quad F' := \{1\} \times F, \quad g_0' := q_0,$$

$$\Delta' := \Delta \cup \{(p,a,(1,q)) \mid (p,a,q) \in \Delta, q \in F\} \cup \{((1,p),a,(1,q)) \mid (p,a,q) \in \Delta, q,q \in F\}.$$

Then \mathcal{A} co-Büchi accepts $\alpha \in \Sigma^{\omega}$

- $\Leftrightarrow \exists$ infinite run ρ_α such that only states from F are seen.
- $\Leftrightarrow \exists \text{ run } \rho'_{\alpha} \text{ such that finally only states from } \{1\} \times F = F' \text{ are seen.}$
- $\Leftrightarrow \mathcal{B} \text{ E-accepts } \alpha.$

7.2 Exercise 13

Let L be the language recognized by the given automaton. Apply LANDWEBER's theorem:

- (a) L is deterministically E-recognizable iff \mathcal{F} is closed under reachable loops. $\Rightarrow L$ is not deterministically E-recognizable.
- (b) L is deterministically BÜCHI recognizable iff \mathcal{F} is closed under superloops. $\Rightarrow L$ is deterministically BÜCHI recognizable.

 $algorithmic\ solution:$

8 Exercise from 12-07-2005

8.1 Exercise 14

 $L = \{\alpha \in \Sigma^\omega \mid \text{ if } a \text{ occurs in } \alpha \text{ then } b \text{ occurs later on}\}.$

(a) Staigner-Wagner-automaton for L with $\mathcal{F} = \{\{1\}, \{1, 2, 3\}\}$:

- (b) Tarjan's SCC (strongly connected components) algorithm on graph G:
 - 1. Do DFS (depth first search) through G and remember enter/farewell times.
 - 2. Reverse edges of graph $G. \to \overline{G}$

- 3. Do DFS on \overline{G} starting from vertex with highest farewell. The reachable vertices form a SCC S of G.
- 4. Repeat step 3 without S.

Given Automaton A:

DFS through A:

Notation E/F is used, whereas E indicates the step number at the entering into the current state ("enter") and F the step number while leaving the current state ("farewell"). Edge-reversed Automaton $\overline{\mathcal{A}}$:

The red marked components are the SCCs.

8.2 Exercise 15

For $n \ge 1$ there exists $L_n := a_1^{\omega} + \cdots + a_n^{\omega}$ (with $\Sigma_n = \{a_1, \dots, a_n\}$, which is accepted by a STAIGNER-WAGNER automaton with n accepting state sets but not by one with n-1.

Proof:

1. L is accepted by

with acceptance sets $\mathcal{F} = \{\{0, i\} \mid i \leq n\}$.

2. L_n cannot be accepted by STAIGNER-WAGNER automaton with only n-1 acceptance sets. Assume there is such an automaton \mathcal{A} . There exist $i \neq j$ and runs ρ of \mathcal{A} on a_i^{ω} and ρ' of \mathcal{A} on a_j^{ω} such that $\operatorname{Occ}(\rho) = \operatorname{Occ}(\rho') \in \mathcal{F}$. Let m minimal such that $\operatorname{Occ}(\rho[0 \dots m]) = \operatorname{Occ}(\rho)$. Let $\rho(m) = q \in \operatorname{Occ}(\rho')$.

Choose suffix ρ'' of ρ' starting with q, then $\rho(0) \dots \rho(m-1)\rho''$ is a run on $a_i^{m-1} a_j^{\omega}$ with same occurrence set. Contradiction.

8.3 Exercise 16

Surprise: A nondeterministic Staigner-Wagner automaton cannot be determinized! *Proof:*

- 1. Every nondeterministic STAIGNER-WAGNER automaton can be completed by creating a new sink state to which all missing edges are connected.
- 2. Assume Staigner-Wagner automaton can be determinized.

Then the following class inclusions emerge:

ndet-co-Büchi
$$\stackrel{\text{Exercise }12}{=}$$
ndet-SW = det-SW \subsetneqq det-co-Büchi.

But this is a contradiction to the class hierarchy!

9 Exercise from 12-14-2005

9.1 Example: S1S definable property

• property: P_1 holds from some odd position onwards, e.g.

• formula (intuitive): $\phi(X_1) = \exists t (t \text{ odd } \land \forall s \geq t : X_1(s))$ How to formulate "odd"? Answer: second order logic.

Replace "t odd" by " $\exists Y(\neg Y(0) \land \forall t(Y(t) \leftrightarrow Y(T')))$ ". The resulting formula would then be

$$\exists Y [(\neg Y(0) \land \forall t (Y(t) \leftrightarrow Y(T'))) \land \exists t (Y(t) \land \forall s \geq t : X_1(s))].$$

• *Notation:* The sequence

$$\left(\begin{array}{c} 1\\1\\1\\1 \end{array} \right) \left(\begin{array}{c} 1\\1\\1\\1 \end{array} \right) \left(\begin{array}{c} 1\\1\\1\\1 \end{array} \right) \text{ is written as } \left(\begin{array}{c} 1&1&1\\1&1&1\\1&1&1 \end{array} \right).$$

9.2 Exercise 17

(a) $L = \{\alpha \in \{0,1\}^{\omega} \mid \alpha \text{ contains } 00 \text{ infinitely often, but } 11 \text{ only finitely often} \}$. Deterministic RABIN automaton (thanks to Klaus)

remembers every last two read letters. $\Omega = \{(\{q_{11}\}, \{q_{00}\})\}.$

(b) L recognized by a RABIN automaton \mathcal{A} with $\Omega = \{(Q_1, F_1), \dots, (E_k, F_k)\}$ and $E_i = \emptyset \ \forall 1 \leq i \leq k$. By definition α is accepted by \mathcal{A} iff $\operatorname{Inf}(\rho_{\alpha}) \cap F_i \neq \emptyset$ and $E_i \cap \operatorname{Inf}(\rho_{\alpha}) = \emptyset$ (which is always satisfied in this situation) for some i.

If we choose $F = \bigcup_{i=1}^k F_i$ then \mathcal{A} with F as a BÜCHI automaton accepts L.

9.3 Exercise 18

Tool: http://www-i7.informatik.rwth-aachen.de/d/research/omegadet.html Short description of the MULLER-SCHUPP - algorithm to calculate an update step of the deterministic MULLER automaton from an initial tree t on the input symbol $a \in \Sigma$:

- 1. Copy t, replace green by yellow.
- 2. (a) Delete state sets P of each leaf.
 - (b) Introduce sons labeled with $P' := \{q \mid \exists p \in P : (p, a, q) \in \Delta\}.$

- (c) Delete all states which occur also more to the left proceeding from right to left.
- (d) Split any set into its final and non-final states producing a left son labeled green and a right son labeled red respectively, each named with a free node name.
- 3. Delete all nodes which did not get a new non-empty (and hence named) descendant.
- 4. Compress path segments into their top node, giving it color green if merged with a path segment containing a green or yellow node.

MULLER-SCHUPP - construction (for better readability yellow is set to blue): Given automaton \mathcal{A} on the input word $\alpha = ababb(ab)^{\omega}$.

 $\overset{2a,b}{\sim}$

2a,b

 \bullet initial tree:

 $q_0q_1q_2$

20

• Process *a*:

 $3:q_0q_1$

 $\overset{1}{\leadsto}$

 $2:q_2$

 $\overset{1}{\leadsto}$

 $2:q_{2}$

3∕,*4*′

 $3:q_0q_1$

 $\overset{2\not o,d}{\leadsto}$

ullet Process b:

• Process b:

Result: The states of the deterministic RABIN automaton are the last MULLER-SHUPP trees in each processing step. So the run of the resulting deterministic automaton is:

Note: There are other constructions like the SAFRA construction which are more complex but yield better results in the tool.

10 Exercise from 12-21-2005

10.1 Exercise 19

Given $\Sigma_n = \{\#, 1, \dots, n\}$ and nondeterministic BÜCHI automaton \mathcal{A}_n with $L(\mathcal{A}) =: L_n$.

(a) Characterization by sequences.

$$\alpha \in L_n \Leftrightarrow \exists \text{ a sequence } i_1 i_2 i_2 i_3 \dots i_{k-1} i_k i_k i_1, \quad i, j \in \Sigma_n \setminus \{\#\},$$

which is repeated infinitely often and starts with #.

The deterministic Muller automaton checks wether such a sequence exists.

Choose $Q = \Sigma_n \times \Sigma_n \cup \{q_0, q_s\}$. Δ consists of rules

$$-(ab, c, bc), a, b, c \in \Sigma_n,$$

$$-(q_0, \#, 11), (q_0, a, q_s), a \in \Sigma_n \setminus \{\#\},\$$

$$-(q_s, a, q_s), a \in \Sigma_n.$$

For \mathcal{F} we add $F \subseteq Q$ to \mathcal{F} iff F contains a characteristic sequence.

Note: The relation Δ also defines a transition function here.

(b) Recall LANDWEBER's theorem:

Let L be recognized by a deterministic Muller automaton with accepting component \mathcal{F} , then: L is recognized by a deterministic Büchi automaton iff \mathcal{F} is closed under superloops.

 $\Rightarrow L_n$ is deterministically BÜCHI recognizable.

10.2 Exercise 20

(a) $L_1 := \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}^* \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}^{\omega}$.

$$\varphi_1(X_1, X_2) = X_1(0) \wedge X_2(0) \tag{1}$$

$$\wedge \exists t \big(t > 0 \land X_1(t) \land X_2(t) \tag{2}$$

$$\land \forall s (0 < s < t \to X_1(s) \land \neg X_2(s)) \tag{3}$$

$$\land \forall s (s \ge t \to \underbrace{((X_1(s) \leftrightarrow \neg X_2(s')) \land (X_2(s) \leftrightarrow \neg X_2(s')))}_{(*)}).$$
 (4)

Comment:

(1): Describes: First letter is $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

(2): $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ appears again at position t > 0.

(3): In-between positions 0 and t only ($_0^1$) occurs.

(4): After t ($\frac{1}{1}$) and ($\frac{0}{0}$) alternate.

Remark: (*) cannot be replaced by

$$(X_1(s) \land X_2(s)) \leftrightarrow (\neg X_1(s') \land \neg X_2(s'))$$

Counter-example:

$$\left(\begin{array}{cccc}1&0&1&1&\cdots\\1&0&0&0&\cdots\end{array}\right)$$

satisfies the formula because the implication at the second position always is true.

(b) $L_2 := \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}^* \begin{pmatrix} 0 \\ 1 \end{pmatrix}^{\omega}$.

$$\varphi_2(X_1, X_2) = \exists Y \big(Y(0) \land Y(0') \land Y(0'') \land \forall t (Y(t) \leftrightarrow \neg Y(t') \land \neg Y(t''))$$
 (5)

Comment:

(5): Y is second order variable representing a $\mod 3$ counter.

(6): $t \mod 3 = 0$ and: before t only $\left(\begin{smallmatrix} 1 \\ 1 \end{smallmatrix} \right)$ and starting at t only $\left(\begin{smallmatrix} 0 \\ 1 \end{smallmatrix} \right)$ occurs.

11 Exercise from 01-11-2006

11.1 Exercise 21

Given Büchi automaton A:

Example situation:

$$\mathbb{N}$$
 0 1 2 3 4 ...

 X 1 0 0 1 1 ... $[X = \{0, 3, 4, ...\}]$
 Y_0 1 0 0 0 0 ... $[Y_0 = \{0, ...\}]$
 Y_1 0 1 1 1 0 ... $[Y_1 = \{1, 2, 3, ...\}]$
 Y_2 0 0 0 0 1 ... $[Y_2 = \{4, ...\}]$

S1S-formula for A:

$$\varphi(X) = \exists Y_0 \exists Y_1 \exists Y_2 [\operatorname{Partition}(Y_0, Y_1, Y_2) \land \underbrace{Y_0(0)}_{q_0 \text{ initial state}} \\ \land \forall t \big((Y_0(t) \land X(t) \land Y_1(t')) \lor \\ (Y_1(t) \land \neg X(t) \land Y_1(t')) \lor \\ (Y_1(t) \land X(t) \land Y_2(t')) \lor \\ (Y_2(t) \land \neg X(t) \land Y_1(t')) \big) \\ \land \forall t \exists s (t < s \land Y_s(s))],$$

Partition
$$(Y_0, Y_1, Y_2) := \forall t ((Y_0(t) \vee Y_1(t) \vee Y_2(t))$$

 $\wedge \neg ((Y_0(t) \wedge Y_1(t)) \vee (Y_0(t) \wedge Y_2(t)) \vee (Y_1(t) \wedge Y_2(t)))).$

11.2 Exercise 22

(a) 4 states:

Let
$$\mathcal{A} = (Q, \{0, 1\}, q_0, \Delta, F), Q = \{q_0, \dots, q_7\}.$$

For $0 \le i \le 7$: $(i_1, i_2, i_3)_b = i \quad [i = i_2 \cdot 2^2 + i_1 \cdot 2^1 + i_0 \cdot 2^0]$

$$\psi_i(Y_0, Y_1, Y_2, t) := \left\{ \begin{array}{cc} Y_2(t), & i_2 = 1 \\ \neg Y_2(t), & i_2 = 0 \end{array} \right\} \wedge \left\{ \begin{array}{cc} Y_1(t), & i_1 = 1 \\ \neg Y_1(t), & i_1 = 0 \end{array} \right\} \wedge \left\{ \begin{array}{cc} Y_0(t), & i_0 = 1 \\ \neg Y_0(t), & i_0 = 0 \end{array} \right\}.$$

e.g.:
$$\psi_3(Y_0, Y_1, Y_2, t) = \neg Y_2(t) \land Y_2(t) \land Y_0(t)$$
 [3 = (011)_b]

$$\delta_{(i,b,j)}(Y_0, Y_1, Y_2, t) := \left\{ \begin{array}{l} \psi_i(t) \wedge \neg X(t) \wedge \psi_j(t'), & b = 0 \\ \psi_i(t) \wedge X(t) \wedge \psi_j(t'), & b = 1 \end{array} \right\}$$

i.e.
$$q_i \xrightarrow{b} q_j \sim \delta_{(i,b,j)}$$

$$\varphi(X) := \exists Y_0 \exists Y_1 \exists Y_2 \left[\psi_0(0) \land \forall t \left(\bigvee_{(q_i, b, q_j) \in \Delta} \delta_{(i, b, j)}(Y_0, Y_1, Y_2, t) \right) \land \forall t \exists s \left(t < s \land \bigvee_{q_i \in F} \psi_i(s) \right) \right].$$

(b*) – First idea: Characterise a position $\rho(t)$ of run ρ not by a vector X with |Q| components but by the transposed one. Then the position of X(t) can be calculated as $t \cdot k$, thus $X(t) \sim Y(t \cdot k)$.

But this of course requires a 2nd set variable!

- Better idea:

$$\rightarrow q_0 \xrightarrow{1} q_1 \xrightarrow{1} q_2$$

$$\downarrow 0$$

corresponds to

$$\rightarrow q_0 \xrightarrow{101} q_2$$

- 1. Successful run: It suffices to consider $n \cdot k$ states for fixed length k.
- 2. Flag wether we have seen at least one final state in between.
- 3. Mark beginning of encoding.

12 Exercise from 01-18-2006

12.1 Exercise 23

 $S1S_0$:

- Eliminate 0, <.
- Successor ' as Succ(X,Y) what especially means that X and Y are singletons.
- Eliminate FO-variables, use $X \subseteq Y$, Sing(X).
- (a) Given $\varphi(X) = \exists t (\neg X(t) \to X(t'))$, the corresponding S1S₀-formula in prenex normal form results in

$$\psi(X) = \exists T \exists S (\underbrace{\operatorname{Succ}(T,S)}_{T,S \text{ singletons and in successor closure}} \land \underbrace{(T \subseteq X \lor S \subseteq X)}_{\neg p \to q \equiv p \lor q}).$$

Note: $T \subseteq X : \{t\} \subseteq X \Rightarrow t \in X$.

(b) Find BÜCHI automaton \mathcal{A} for Succ $(T, S) \wedge (T \subseteq X \vee S \subseteq X)$. Notation:

$$\begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} \sim X \\ \sim T \\ \sim S$$

1. T, S are singletons:

T:

$$\dots \begin{pmatrix} * \\ 0 \\ * \end{pmatrix} \dots \begin{pmatrix} * \\ 0 \\ * \end{pmatrix} \begin{pmatrix} * \\ 1 \\ * \end{pmatrix} \begin{pmatrix} * \\ 0 \\ * \end{pmatrix} \dots \qquad \dots \begin{pmatrix} * \\ 1 \\ * \end{pmatrix}$$

not allowed, because then two positions belong to T

S:

$$\dots \begin{pmatrix} * \\ * \\ 0 \end{pmatrix} \dots \begin{pmatrix} * \\ * \\ 0 \end{pmatrix} \begin{pmatrix} * \\ * \\ 1 \end{pmatrix} \begin{pmatrix} * \\ * \\ 0 \end{pmatrix} \dots$$

2. S successor of T:

$$\dots \begin{pmatrix} * \\ 0 \\ 0 \end{pmatrix} \dots \begin{pmatrix} * \\ 0 \\ 0 \end{pmatrix} \underbrace{\begin{pmatrix} * \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} * \\ 0 \\ 1 \end{pmatrix}}_{(*)} \begin{pmatrix} * \\ 0 \\ 0 \end{pmatrix} \dots$$

Note: This formula already contains that T, S are singletons.

3. $T \subseteq X$: Replace (*) by

$$\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} * \\ 0 \\ 1 \end{pmatrix} \quad \text{or} \quad \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

4. \Rightarrow automaton for quantifier-free formula:

- 5. Quantifiers: " $\exists S$ " results in a projection of transition labels onto first two components (i.e. delete third components), for " $\exists T$ " delete second components.
 - \Rightarrow complete automaton:

$$\Rightarrow L(\mathcal{A}_{\varphi}) = \{0,1\}^{\omega} \setminus \{0^{\omega}\}.$$

12.2 Exercise 24

Ultimately periodic word $\alpha \in \{0,1\}^{\omega}$:

(a) Define Büchi automaton A_{α} for $u = u_1 u_2 \dots u_k$:

$$\longrightarrow \bullet \qquad \stackrel{u_1}{\longrightarrow} \bullet \qquad \stackrel{u_2}{\longrightarrow} \cdots \qquad \bullet \qquad \stackrel{u_k}{\longrightarrow} \bullet \qquad v$$

- 1. $L(A) = \{\alpha\}$.
- 2. Number of states $|Q_{\alpha}| = |u| + |v|$.
- $\Rightarrow \mathcal{A} \text{ accepts } \alpha \text{ iff } L(\mathcal{A}) \cap L(\mathcal{A}_{\alpha}) = L(\mathcal{A}) \cap \{\alpha\} \neq \emptyset.$

Properties:

(1) The intersection of BÜCHI automata is effective (there is a BÜCHI automaton \mathcal{A}' with $L(\mathcal{A}') = L(\mathcal{A}) \cap L(\mathcal{A}_{\alpha})$).

(2) The emptiness problem for BÜCHI automata is decidable.

Reduction to a decidable problem \Rightarrow the original problem is also decidable.

- (b) Find a *tight* upper bound.
 - Measure for α : |u| + |v| =: n.
 - Measure for $\mathcal{A} = (Q, \Sigma, q_0, \Delta, F)$: $|Q| + |\Delta| =: m$ (usual graph size).
 - (1) intersection: by construction of the lecture

$$\mathcal{A}' := (\underbrace{Q \times Q_{\alpha} \times \{1, 2, 3\}}_{\#=3 \cdot n \cdot |Q|}, \dots, \Delta', F')$$

with $|\Delta'| \leq |\Delta|$ ($Q' = Q \times Q_{\alpha} \times \{1, 2\}$ also possible).

- (2) emptiness: by Tarjan's algorithm in time $\mathcal{O}(|V| + |E|)$ for graph (V, E). For automaton $\mathcal{A}' = (Q', \dots, \Delta', F')$ in time $\mathcal{O}(|Q'| + |\Delta'|)$
- \Rightarrow original problem can be solved in time

$$\mathcal{O}(3 \cdot n \cdot |Q| + |\Delta|) = \mathcal{O}(n \cdot m).$$

13 Exercise from 01-25-2006

13.1 Exercise 25

$$(\omega + \omega)$$
-word $\alpha \hat{\beta}$: $\alpha(0)\alpha(1)\alpha(2)\dots \beta(0)\beta(1)\beta(2)\dots$

$$\operatorname{Inf}(\rho_{\alpha}) \xrightarrow{\Delta'} p \in Q$$

Emptiness decision procedure: Let $\mathcal{A} = (Q, \Sigma, q_0 \Delta, \Delta', F)$.

- 1. Collect all $q \in Q$ with $(P,q) \in \Delta'$ for some $P \subseteq Q$. Set $Q' := \{q \in Q \mid \exists P \subseteq Q : (P,q) \in \Delta'\}$.
- 2. Check the Büchi ω -automaton $\mathcal{A}_q = (Q, \Sigma, q, \Delta, F)$ for emptiness $\forall q \in Q$.
- 3. Collect all sets $P \subseteq Q$ such that there is $q \in Q$ with $(P,q) \in \Delta'$ and $L(\mathcal{A}_q) \neq \emptyset$. We obtain family $\mathcal{F} := \{P \subseteq Q \mid \exists q \in Q : (P,q) \in \Delta' \land L(\mathcal{A}_q) \neq \emptyset\}$.
- 4. Check the nondeterministic MULLER automaton $\mathcal{A}' = (Q, \Sigma, q_0, \Delta, \mathcal{F})$ for emptiness.

Claim: $L(\mathcal{A}) \neq \emptyset \Leftrightarrow L(\mathcal{A}') \neq \emptyset$.

<u>Proof:</u> " \Leftarrow ": Let $\alpha \in L(\mathcal{A}')$ be an accepting run of \mathcal{A}' on α , in particular: $\mathrm{Inf}(\rho_{\alpha}) \in \mathcal{F}$.

By definition exists $q \in Q$ such that $(\operatorname{Inf}(\rho_{\alpha}), q) \in \Delta'$ and $L(\mathcal{A}_q) \neq \emptyset$.

Let $\beta \in L(\mathcal{A}_q)$ and ρ_{β} be an accepting run of \mathcal{A}_q on β .

$$\Rightarrow \operatorname{Inf}(\rho_{\beta}) \cap F \neq \emptyset, \ \rho_{\beta}(0) = q.$$

 $\Rightarrow (\rho_{\alpha}, \rho_{\beta})$ is an accepting run of \mathcal{A} on $\alpha \hat{\beta}$.

"
$$\Rightarrow$$
": Analogously: $(\rho_{\alpha}, \rho_{\beta})$ on $\alpha \hat{\beta} \Rightarrow \dots$

Remark: Emptiness-check for nondeterministic Muller automata:

• 1st way: nondeterministic Muller automaton \rightarrow nondeterministic Büchi automaton.

- 1. BÜCHI automaton guesses $F \in \mathcal{F}$.
- 2. Büchi automaton guesses the position from which on only F-states.
- 3. Ensures that all F-states are visited and no other state.
- 2nd way: direct procedure.
 - 1. Remove non-reachable states and remove $F \in \mathcal{F}$ that contains non-reachable state.
 - 2. For each $F \in \mathcal{F}$: Restrict \mathcal{A} on F. Check if new \mathcal{A}_F is strongly connected.
 - 3. Yes, if A_f is strongly connected for some $F \in \mathcal{F}$. No, if A_f is not strongly connected for all $F \in \mathcal{F}$.

13.2 Exercise 26

To obtain the desired form of $\varphi(X)$ we consider two possible ways.

- 1st way:
 - 1. Translate $\varphi(X)$ into equivalent BÜCHI automaton \mathcal{A} .
 - 2. Find complement automaton \overline{A} with $L(\overline{A}) = \{0,1\}^{\omega} \setminus L(A)$.
 - 3. Find S1S-formula $\overline{\varphi}(X)$ equivalent to $\overline{\mathcal{A}}$ of the form $\exists Y_1 \dots \exists Y_n \overline{\psi}(Y_1, \dots, Y_n, X)$ (standard construction).

Claim: $\neg \overline{\varphi}(X)$ is the desired formula.

Proof:

$$-\neg \overline{\varphi}(X) = \forall Y_1 \dots \forall Y_n \psi(Y_1, \dots, Y_n, X) \text{ with } \psi(Y_1, \dots, Y_n, X) \equiv \neg \overline{\psi}(Y_1, \dots, Y_n, X).$$

$$-\alpha \in \{0,1\}^{\omega}, \ \alpha \models \neg \overline{\varphi}(X) \Leftrightarrow \text{not } \alpha \models \overline{\varphi}(X) \Leftrightarrow \text{not } \alpha \in L(\overline{\mathcal{A}}) \stackrel{2}{\Leftrightarrow} \alpha \in L(\mathcal{A}) \stackrel{1}{\Leftrightarrow} \alpha \models \varphi(X).$$

So

$$\neg \overline{\varphi}(X) \equiv \varphi(X)$$
 over ω words.

- 2nd way: Use the hint.
 - 1. As above.
 - 2. Transform BÜCHI automaton \mathcal{A} into equivalent deterministic MULLER automaton \mathcal{A}' . (MCNAUGHTON or MULLER-SHUPP construction)

3. Find S1S-formula $\varphi'(X)$ equivalent to \mathcal{A}' of the denied form. MULLER automaton $\mathcal{A}' = (Q, \{0, 1\}, q_1, \delta, \mathcal{F}), \ Q = \{q_1, \dots, q_n\}.$

$$\varphi'(X) = \forall Y_1 \dots \forall Y_n \bigg(\operatorname{Partition}(Y_1, \dots, Y_n) \wedge Y_1(0)$$

$$\wedge \forall t \left[\bigwedge_{i=1}^n ((Y_i(t) \wedge \neg X(t) \to Y_{\delta(q_i,0)}(t')) \wedge (Y_i(t) \wedge X(t) \to Y_{\delta(q_i,1)}(t'))) \right]$$

$$\Rightarrow \bigvee_{F \in \mathcal{F}} \left(\bigwedge_{q_i \in F} \exists^{\infty} t \ Y_i(t) \wedge \bigwedge_{q_j \notin F} \neg \exists^{\infty} t \ Y_j(t) \right) \bigg),$$

whereat $\exists^{\infty} t \ \chi(t) \equiv \forall s \exists t (s < t \land \chi(t)).$

14 Exercise from 02-01-2006

14.1 Exercise 27

 φ -expansion up to position 10:

p_1	0	0	0	0	1	0	0	1	1	1	1	
p_2												
$\neg p_1$	1	1	1	1	0	1	1	0	0	0	0	
$p_1 \wedge p_2$	0	0	0	0	0	0	0	1	1	1	1	
$\neg p_1 U(p_1 \wedge p_2)$	0	0	0	0	0	1	1	1	1	1	1	
Xp_2	0	1	0	0	1	0	1	1	1	1	1	
XXp_2	1	0	0	1	0	1	1	1	1	1	1	
$(p_2 \wedge XXp_2)$		0	0	0	0	1	0	1	1	1	1	
$(\neg p_1 U(p_1 \wedge p_2)) U(p_2 \wedge XXp_2)$	0	0	0	0	0	1	1	1	1	1	1	

Hints:

- Sort subformulas by increasing complexity.
- If the right site of an until-formula is true at a position the formula itself directly is true. So the first step to evaluate the until-formula would be copying all 1s of the right-site-formula.

14.2 Exercise 28

- (a) Two interpretations:
 - 1. " ψ holds sometime"

2. "if ψ holds at all then also φ "

$$\varphi N\psi \equiv G\neg \psi \vee (\neg \psi)U(\psi \wedge \varphi)$$

The operator N is not fixed because of the different possible interpretations.

- (b) Two interpretations:
 - 1. " φ and ψ from now on until the next $\neg \psi$ "

$$\psi \wedge \varphi \qquad \neg \psi \qquad \text{or} \qquad \psi \wedge \varphi$$

$$\varphi W \psi \equiv (\psi \wedge \varphi) U(\neg \psi) \qquad \vee \qquad G(\psi \wedge \varphi)$$

2. "always if ψ then φ "

$$\psi \wedge \varphi \quad \neg \psi, \ \varphi? \quad \psi \wedge \varphi$$
$$\varphi W \psi \equiv G(\psi \to \varphi)$$

(c) Interpretation:

$$\varphi$$

$$\neg \psi \qquad \psi \qquad \text{or} \qquad \neg \varphi$$

$$\varphi B \psi \equiv (\neg \psi) U(\varphi \wedge \neg \psi \wedge XF\psi) \qquad \vee \qquad G \neg \psi$$

14.3 Exercise 29

$$\mathcal{A} = (Q, \Sigma, q_0, \Delta, F), \ \Delta \subseteq Q \times \Sigma \times Q$$

 Δ : $\#=2^8=512$, $F\subseteq Q$: #=4 \Rightarrow about 2000 possible automata to consider! Problem: All ω -words with suffix $\binom{1}{1}^{\omega}$ belong to $L(\varphi)$. Solution in three steps:

- 1. There is a Büchi automaton \mathcal{A} with three states with the interpretations
 - q_0 : no current request,
 - q_1 : wait for response,
 - q_2 : response and new request

for the states and

$$\begin{pmatrix} p_1 \\ p_2 \end{pmatrix}$$
 \sim request \sim response

for the transition labels. Form of the automaton:

- 2. Claim: There is no BÜCHI automaton with less than three states.
 - (a) Since $L(\varphi) \neq \emptyset \Rightarrow$ each BÜCHI automaton needs at least one final state q.
 - (b) Assume that there is a BÜCHI automaton \mathcal{A} with one final state such that $L(\varphi) = L(\mathcal{A})$.
 - $\binom{0}{0}^{\omega} \in L(\mathcal{A})$: Let ρ be an accepting run of \mathcal{A} on $\binom{0}{0}^{\omega}$.
 - $\binom{1}{1}^{\omega} \in L(\mathcal{A})$: Let ρ' be an accepting run of \mathcal{A} on $\binom{1}{1}^{\omega}$.

 \Rightarrow

- ρ visits q infinitely often. Let m with $\rho(m) = q$.
- ρ' visits q infinitely often. Let m' > 0 with $\rho'(m') = q$.

$$\rho': \rho'(0) \xrightarrow{\begin{pmatrix} 1 \\ 1 \end{pmatrix}} \rho'(1) \xrightarrow{\begin{pmatrix} 1 \\ 1 \end{pmatrix}} \cdots \xrightarrow{\begin{pmatrix} 1 \\ 1 \end{pmatrix}} \rho'(m') \xrightarrow{\begin{pmatrix} 1 \\ 1 \end{pmatrix}} \cdots \\
\rho: \rho(0) \xrightarrow{\begin{pmatrix} 0 \\ 0 \end{pmatrix}} \rho(1) \xrightarrow{\begin{pmatrix} 0 \\ 0 \end{pmatrix}} \cdots \xrightarrow{\begin{pmatrix} 0 \\ 0 \end{pmatrix}} \rho(m) \xrightarrow{\begin{pmatrix} 0 \\ 0 \end{pmatrix}} \rho(m+1) \xrightarrow{\begin{pmatrix} 0 \\ 0 \end{pmatrix}} \cdots$$

Consider new (red colored) run $\hat{\rho}$. $\hat{\rho}$ is accepting run on $\begin{pmatrix} 1 \\ 1 \end{pmatrix}^{m'} \begin{pmatrix} 0 \\ 0 \end{pmatrix}^{\omega} \notin L(\varphi)$. Contradiction.

3. Assume Büchi automaton $\mathcal{A} = (\{q_0, q_1\}, \ldots), L(\mathcal{A}) = L(\varphi).$

 $\Rightarrow q_0, q_1$ must be final, q_0 is the initial state.

- (*): Transition not possible because $\binom{1}{0}\binom{0}{1}^{\omega} \in L(\varphi)$.
- (**): Transition not possible because $\binom{1}{0}\binom{1}{0}\binom{0}{1}\binom{0}{1}^{\omega}\in L(\varphi)$.

But the resulting automaton also doesn't recognize $L(\varphi)$ because $\binom{1}{0}^{\omega} \notin L(\varphi)$. So the contradiction is complete.