Liste der Probleme und Algorithmen

AA Approximationsalgorithmus

MCA Monte-Carlo-Algorithmus (mit... 1F: einseitigem Fehler, 2F: beidseitigem Fehler,

UF: unbeschränktem Fehler)

Probleme	Algorithmen
Approximative Algorithmen	
MinVC Eingabe: $G = (V, E)$	• Einfacher 2-AA O(E)
MinSetCover (NP-schwer) Eingabe: Menge X, Mengensystem F	• GreedySetCover $O(X ^2 \cdot \mathscr{F}), H(m)\text{-AA mit } m = \max\{ F : F \in \mathscr{F}\}$
Einfaches Rucksackproblem (SKP, entspricht KP ₀])	 Greedy-SKP 2-AA, O(n · log n) P-SKP
Eingabe: n Gewichte	PTAS, $O(n^{\lceil 1/\varepsilon \rceil + 1} \cdot \log n)$
Eingeschränktes Rucksackproblem (\mathbf{KP}_{δ})	• MOD-SKP PTAS für festes δ , Laufzeit exponentiell in $\lceil 1/\epsilon \rceil$
Allgemeines Rucksackproblem (KP) <i>Eingabe</i> : n Gewichte mit ihren Kosten c_i Es gilt: $KP \in NPO(I)$	 DPKP optimal, O(n² · max {c₁,, cₙ}) (pseudopolynomiell) F-KP FPTAS, O(1/ε · n³)
Δ -TSP Eingabe: G = ((V, E), c)	 MIN-ST mit Tiefensuche 2-AA, O(E · log(E)) Christofides 1,5-AA, O(E ⁴)
Randomisierte Algorithmen	
Sortieren Eingabe: n Zahlen	• Random QuickSort, RQS $ E[T] \sim 2n \cdot \ln(n) + \Theta(n) $ Las Vegas
MaxE k Sat Eingabe: Formel $F = F_1 \wedge \wedge F_m$ über n Variablen	• Random Assignment $E[R(F)] \le 2^k / (2^k - 1)$
MaxCut Eingabe: G = (V, E)	• RanSam $E[R(G)] \le 2$
Quadratische Nichtreste	• Quadratic Nonresidue Las Vegas
Eingabe: Primzahl p	

Probleme	Algorithmen
(Nicht-)Primzahl-Test	Gemeinsames Prinzip: Methode häufiger Zeugen
	• SSSA (vereinfachter Solovay-Strassen-Alg.) Eingabe: ungerade Zahl n mit ungeradem (n-1)/2 Zeugenkriterium: a ^{(n-1)/2} ∉ {-1;1} MCA mit 1F, polynomielle Laufzeit
	 SSA (Solovay-Strassen-Algorithmus) Eingabe: ungerade Zahl n Zeugenkriterium: a^{(n-1)/2} ≠ Jac[^a/_n] MCA mit 1F, polynomielle Laufzeit
	Miller-Rabin Eingabe: ungerade Zahl n Zeugenkriterium: Wurzelzeuge MCA mit 1F, polynomielle Laufzeit
Primzahlerzeugung	 Prime Generation PG(l, k) Eingabe: gewünschte Länge l, Anzahl k von Iterationen eines Primzahltests W'keit. Suche erfolglos: < e⁻¹ W'keit. falscher Ausgabe: < l² / (2^{l-1})
Nicht-Äquivalenz von Polynomen	• NEQ-POL <i>Prinzip</i> : Fingerprinting
<i>Eingabe</i> : Polynome über \mathbb{Z}_n	
MinCut Eingabe: Multigraph $G = (V, E)$	• Random Contraction (RC) O(n²), Prob[opt. Schnitt] ≥ 2 / (n · (n-1)) = 1/[n über 2] Erweiterung: RC _k für k Läufe von RC (bei k = ½ n² ist Prob[opt. Schnitt] > 1 - 1/e)
	 I-COMB-CONTRACT mit 1: N→N (Übergang zur det. Berechnung) O(n² + l(n)³) Erfolgsw'keit: [l(n) über 2] / [n über 2]
	• RRC $O(n^2 \cdot \log(n))$ Erfolgsw'keit $\geq 1 / \Omega(\log_2(n))$
MaxSat	RSMS (Random-Sampling für MaxSat)
	• RRRMS (Relaxation mit Random-Rounding für MaxSat) polynomielle Laufzeit $E[R_{RRRMS}(F)] \leq e / (e\text{-}1)$ $E[R_{RRRMS}(F)] \leq k^k / (k^k \text{-} (k\text{-}1)^k) (MaxEkSat)$
	• COMB $E[R_{COMB}(F)] \le 4/3$
	• RED(RSMS)
3Sat	• Schöning MCA mit 1F O(F · n ^{3/2} · (4/3) ⁿ) Fehlerwahrscheinlichkeit < e ⁻¹⁰