1. Klausur 2013 - Lösung

Quantitative Methoden

25.07.2013

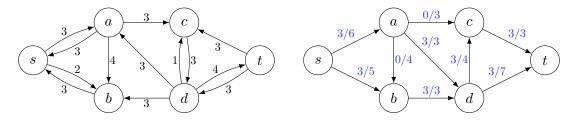
Hinweis:

Dies ist *keine* offizielle Musterlösung. Es besteht keine Garantie, dass die angegebenen Lösungen korrekt sind. Des Weiteren sind viele Erklärungen recht knapp gehalten und möglicherweise in der Klausur nicht ausreichend.

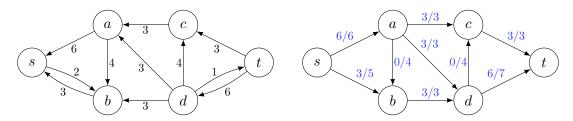
Aufgabe 1

a)

Wähle augmentierenden Pfad (s,b),(b,d),(d,t) mit Engpasskapazität 3:



Wähle augmentierenden Pfad (s, a), (a, c), (c, d), (d, t) mit Engpasskapazität 3:



Wir haben bereits einen maximalen Fluss mit Flusswert 9 gefunden, da es keinen s-t-Weg mehr im Residualgraphen gibt.

b)

Von s aus ist im letzten Residualgraphen nur b erreichbar, d.h. ein minimaler Schnitt wird im ursprünglichen Graphen von der Menge $X = \{s, b\}$ induziert und lautet δ^+ $\{(s, a), (b, d)\}\$ mit u(X) = 9.

c)

Es wurde keine Dijkstra verwendet um die Distanzmarken zu bestimmen, da es keine Möglichkeit gibt Knoten E von A aus mit 7 Schritten zu erreichen.

Aufgabe 2

a)

Dabei steht A für die Anzahl der verkauften Backmischungen Awesome Chocolate in kg und B für die Anzahl der verkauften Backmischungen Baked Sweetness in kg. Die Variablen G_i, K_i, Bu_i und P_i stehen jeweils für die Anzahl in kg, welche von der entsprechenden Zutat in Backmischung $i \in \{A, B\}$ verwendet wurde.

Neu eingeführte Variable x_n :

$$x_n := \begin{cases} 1 & \text{falls die Exportlizenz gekauft wird} \\ 0 & \text{sonst} \end{cases}$$

Aufgabe 3

a)

Optimale Basislösung: $x=(1,3,0,0)^T$, zugehöriger (optimaler) Zielfunktionswert: 11

2	3	0	0	0		5	0	-3	0	-6	0	0	-0.5	-2.5	-11
-1	1	1	0	2	\implies	-1	1	1	0	2				0.5	
1	1	0	1	4		2	0	-1	1	2	1	0	-0.5	0.5	1

Tabelle 1: Simplex-Tableaus zu Aufgabe 3 a)

b)

Zulässige Basislösung: $x=(3,0,1)^T$, zugehöriger (nicht optimaler) Zielfunktionswert: 3

0	0	0	-M	0		M	-M	0	0	3M		0	0	0	-M	0
1	2	0	0	0	,	1	2	0	0	0		0	3	0	-1	-3
1	1	1	0	4	\Longrightarrow	1	1	1	0	4	\Rightarrow	0	2	1	-1	1
-1	1	0	-1	-3		1	-1	0	1	3		1	-1	0	1	3

Tabelle 2: Simplex-Tableaus zu Aufgabe 3 b)

Aufgabe 4

Aufgabe 5

a)

Der Fluss, welcher in den Knoten M_i hinein geht, steht für die von Maschine i verarbeiteten Produkteinheiten. Außerdem kann dem Flusswert einer Kante (M_i, M_j) entnommen werden, wie viele Produkteinheiten von Maschine i zu Maschine j geleitet werden.

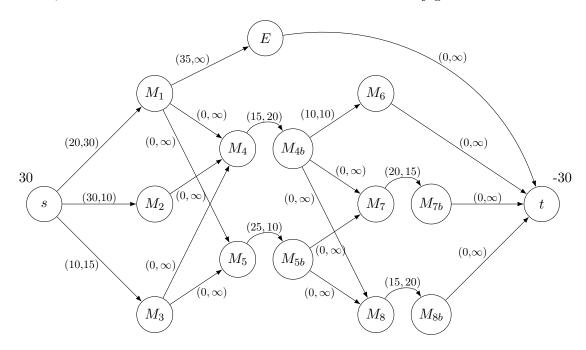


Abbildung 1: Graph zum Minimalkostenflussproblem, für Kanten gilt: (Kosten, Kapazität), die 0 für Knoten ohne Bedarf wurde weggelassen

b)

Wir nutzen das Logarithmengesetz: $\log(xy) = \log(x) + \log(y)$ Außerdem multiplizieren wir die Ergebnisse mit -1, um aus dem Längste-Wege-Problem eine Kürzeste-Wege-Problem zu machen. Dazu definieren wir uns die Funktion f:

$$f: x \mapsto -\log(x)$$

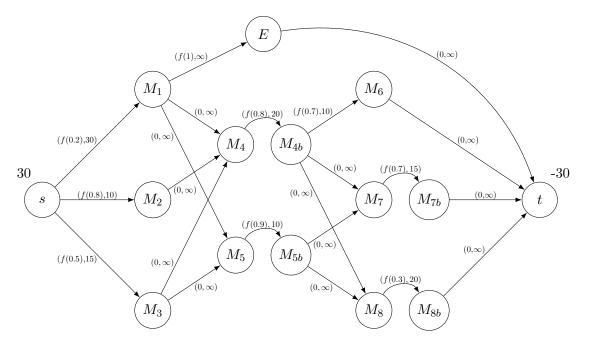


Abbildung 2: Graph mit angepassten Kanten-Kosten $(f: x \mapsto -\log(x))$

Aufgabe 7

a)

Zunächst definieren wir:

$$M := \{1, \dots, m\}$$
$$N := \{1, \dots, n\}$$

Außerdem definieren wir die folgenden Variablen:

$$G_i := \begin{cases} 1 & \text{Polizeistation wird auf Grundstück } i \text{ gebaut} \\ 0 & \text{sonst} \end{cases}$$
 für alle $i \in M$
$$Z_{ij} := \begin{cases} 1 & \text{Station } i \text{ ist für Bezirk } j \text{ zuständig} \\ 0 & \text{sonst} \end{cases}$$
 für alle $i \in M$ und $j \in N$

Nun können wir das ganzzahlige, lineare Programm aufstellen:

$$\begin{array}{llll} \min & \sum\limits_{i \in M} f_i \cdot G_i & + & \sum\limits_{i \in M, \ j \in N} c_{ij} \cdot Z_{ij} \\ s.t. & & \sum\limits_{i \in M} Z_{ij} & = & 1 & \text{ für alle } j \in N \\ & & & \sum\limits_{i \in N} Z_{ij} & \leq & q \cdot G_i & \text{ für alle } i \in M \\ & & & & & & \\ G_i, & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\$$

b)

$$L := \{1, \dots, l\}$$

Führe neue Variable S ein:

$$S_k := \begin{cases} 1 & \text{falls Station } k \text{ in Betrieb bleibt} \\ 0 & \text{sonst} \end{cases} \qquad \text{für alle } k \in L$$

$$\begin{aligned} \min & \sum\limits_{i \in M} f_i \cdot G_i \ + \ \sum\limits_{i \in M, \ j \in N} c_{ij} \cdot Z_{ij} \ + \ \sum\limits_{k \in L, \ j \in N} d_{kj} \cdot r_{kj} \cdot S_k \ + \ \sum\limits_{k \in L} g_k \cdot |S_k - 1| \\ s.t. & \sum\limits_{i \in M} Z_{ij} \ + \ \sum\limits_{k \in L} r_{kj} \cdot S_k \end{aligned} \qquad = 1 \quad \text{für alle } j \in N \\ & \sum\limits_{i \in N} Z_{ij} \ \leq q \cdot G_i \quad \text{für alle } i \in M \\ & G_i, \qquad Z_{ij}, \qquad S_k \qquad \in \{0,1\} \quad \text{für alle } i \in M, \ j \in N, \ k \in L \end{cases}$$